| SAR TEST REPORT                                                                                               |                                                                                                                                                                                              |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                               | For                                                                                                                                                                                          |  |  |
|                                                                                                               | Shenzhen Eview GPS Technology                                                                                                                                                                |  |  |
|                                                                                                               | Personal Mobile Alarm System                                                                                                                                                                 |  |  |
|                                                                                                               | Test Model: EV-07B-4G                                                                                                                                                                        |  |  |
|                                                                                                               | List Model No.: N/A                                                                                                                                                                          |  |  |
|                                                                                                               |                                                                                                                                                                                              |  |  |
|                                                                                                               |                                                                                                                                                                                              |  |  |
| Prepared for<br>Address                                                                                       | <ul> <li>Shenzhen Eview GPS Technology</li> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> </ul>                                        |  |  |
| Prepared by<br>Address                                                                                        | <ul> <li>Shenzhen LCS Compliance Testing Laboratory Ltd.</li> <li>101, 601, Xingyuan Industrial Park, Gushu Community,<br/>Xixiang Street, Bao' an District, Shenzhen, Guangdong,</li> </ul> |  |  |
| Tel<br>Fax                                                                                                    | China<br>: (86)755-82591330<br>: (86)755-82591332                                                                                                                                            |  |  |
| Web                                                                                                           | : www.LCS-cert.com                                                                                                                                                                           |  |  |
| Mail                                                                                                          | : webmaster@LCS-cert.com                                                                                                                                                                     |  |  |
| Date of receipt of test sample<br>Number of tested samples<br>Serial number<br>Date of Test<br>Date of Report | <ul> <li>April 16, 2019</li> <li>1</li> <li>Prototype</li> <li>April 16, 2019~ May 17, 2019</li> <li>May 20, 2019</li> </ul>                                                                 |  |  |
|                                                                                                               |                                                                                                                                                                                              |  |  |
|                                                                                                               |                                                                                                                                                                                              |  |  |
|                                                                                                               | CE                                                                                                                                                                                           |  |  |
|                                                                                                               |                                                                                                                                                                                              |  |  |
|                                                                                                               |                                                                                                                                                                                              |  |  |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 114 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Report No.: LCS190415004AEB

|                                                                                                                                                                                                                                                                                                                                                                                                          | SAR TEST REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Report Reference No:                                                                                                                                                                                                                                                                                                                                                                                     | LCS190415004AEB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Date Of Issue:                                                                                                                                                                                                                                                                                                                                                                                           | May 20, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Testing Laboratory Name:                                                                                                                                                                                                                                                                                                                                                                                 | Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                 | 101, 601, Xingyuan Industrial Park, Gushu Community, Xixiang Street, Bao' an District, Shenzhen, Guangdong, China                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Testing Location/ Procedure:                                                                                                                                                                                                                                                                                                                                                                             | Full application of Harmonised standards ■<br>Partial application of Harmonised standards □<br>Other standard testing method □                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Applicant's Name:                                                                                                                                                                                                                                                                                                                                                                                        | Shenzhen Eview GPS Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                 | #1203 Building 2, GuoLe Technology Park, Lirong Road, Dalang, Longhua, Shenzhen, China                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Test Specification:                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| SAR Max. Values is:                                                                                                                                                                                                                                                                                                                                                                                      | 0.611 W/kg (10g) for Body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                | EN62209-2:2010&EN50566:2017&EN50663:2017&AS/NZS<br>2772.2:2016 Amd 1:2018                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Test Report Form No:                                                                                                                                                                                                                                                                                                                                                                                     | LCSEMC-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          | Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| TRF Originator:                                                                                                                                                                                                                                                                                                                                                                                          | Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Master TRF:                                                                                                                                                                                                                                                                                                                                                                                              | Dated 2017-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Master TRF:<br>Shenzhen LCS Compliance Testin<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compli                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Master TRF:<br>Shenzhen LCS Compliance Testin<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compli<br>assume liability for damages resulti                                                                                                                                                                                                       | Dated 2017-12<br><b>ag Laboratory Ltd. All rights reserved.</b><br>ad in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no                                                                                                                                                                                                                                                 |  |
| Master TRF:<br>Shenzhen LCS Compliance Testin<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compli<br>assume liability for damages resulting<br>its placement and context.                                                                                                                                                                       | Dated 2017-12<br><b>g Laboratory Ltd. All rights reserved.</b><br>ad in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no<br>ng from the reader's interpretation of the reproduced material due to                                                                                                                                                                         |  |
| Master TRF:<br>Shenzhen LCS Compliance Testin<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compli<br>assume liability for damages resulti<br>its placement and context.<br>Test Item Description                                                                                                                                                | Dated 2017-12<br><b>g Laboratory Ltd. All rights reserved.</b><br>ad in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no<br>ng from the reader's interpretation of the reproduced material due to<br><b>Personal Mobile Alarm System</b>                                                                                                                                  |  |
| Master TRF:<br>Shenzhen LCS Compliance Testin<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compli<br>assume liability for damages resultivity<br>its placement and context.<br>Test Item Description:<br>Trade Mark                                                                                                                             | Dated 2017-12<br><b>ig Laboratory Ltd. All rights reserved.</b><br>and in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no<br>ng from the reader's interpretation of the reproduced material due to<br><b>Personal Mobile Alarm System</b><br>N/A                                                                                                                         |  |
| Master TRF:<br>Shenzhen LCS Compliance Testin<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compliance<br>assume liability for damages resulting<br>its placement and context.<br>Test Item Description:<br>Trade Mark                                                                                                                           | Dated 2017-12<br><b>ig Laboratory Ltd. All rights reserved.</b><br>and in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no<br>ng from the reader's interpretation of the reproduced material due to<br><b>Personal Mobile Alarm System</b><br>N/A<br>EV-07B-4G<br>DC 3.7V by Rechargeable Li-ion Battery (800mAh)                                                         |  |
| Master TRF       :         Shenzhen LCS Compliance Testing         This publication may be reproduce         Shenzhen LCS Compliance Testing         the material. Shenzhen LCS Compliance         assume liability for damages resulti         its placement and context.         Test Item Description.         Trade Mark         Model/Type Reference         Ratings         :         Compiled by: | Dated 2017-12<br><b>ig Laboratory Ltd. All rights reserved.</b><br>and in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no<br>ng from the reader's interpretation of the reproduced material due to<br><b>Personal Mobile Alarm System</b><br>N/A<br>EV-07B-4G<br>DC 3.7V by Rechargeable Li-ion Battery (800mAh)<br>Recharged by DC 5V 1000mA Adapter                    |  |
| Master TRF:<br>Shenzhen LCS Compliance Testim<br>This publication may be reproduce<br>Shenzhen LCS Compliance Testing<br>the material. Shenzhen LCS Compli-<br>assume liability for damages resulti-<br>its placement and context.<br>Test Item Description:<br>Trade Mark:<br>Model/Type Reference:<br>Ratings:<br>Result:                                                                              | Dated 2017-12<br><b>ig Laboratory Ltd. All rights reserved.</b><br>and in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>iance Testing Laboratory Ltd. takes noresponsibility for and will no<br>ng from the reader's interpretation of the reproduced material due to<br><b>Personal Mobile Alarm System</b><br>N/A<br>EV-07B-4G<br>DC 3.7V by Rechargeable Li-ion Battery (800mAh)<br>Recharged by DC 5V 1000mA Adapter<br><b>Positive</b> |  |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 114

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 114

Test Report No. : LCS190415004AEB

# SAR -- TEST REPORT

| Test Model                                                            | : EV-07B-4G                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       |                                                                                                                                                                                                                                                                                            |
| EUT                                                                   | : Personal Mobile Alarm System                                                                                                                                                                                                                                                             |
| Applicant                                                             | : Shenzhen Eview GPS Technology                                                                                                                                                                                                                                                            |
|                                                                       | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> </ul>                                                                                                                                                                             |
| Telephone                                                             | : /                                                                                                                                                                                                                                                                                        |
| Fax                                                                   | : /                                                                                                                                                                                                                                                                                        |
|                                                                       |                                                                                                                                                                                                                                                                                            |
|                                                                       |                                                                                                                                                                                                                                                                                            |
| Manufacturer                                                          | : Shenzhen Eview GPS Technology                                                                                                                                                                                                                                                            |
|                                                                       | : Shenzhen Eview GPS Technology<br>: #1203 Building 2, GuoLe Technology Park, Lirong Road,                                                                                                                                                                                                 |
| Address                                                               | : #1203 Building 2, GuoLe Technology Park, Lirong Road,<br>Dalang, Longhua, Shenzhen, China                                                                                                                                                                                                |
|                                                                       | : #1203 Building 2, GuoLe Technology Park, Lirong Road,<br>Dalang, Longhua, Shenzhen, China                                                                                                                                                                                                |
| Address                                                               | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> </ul>                                                                                                                                                                  |
| Address                                                               | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> </ul>                                                                                                                                                                  |
| Address<br>Telephone<br>Fax                                           | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> </ul>                                                                                                                                                                  |
| Address<br>Telephone<br>Fax<br>Factory                                | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> <li>/</li> <li>Shenzhen Eview GPS Technology</li> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,</li> </ul>                                                 |
| Address<br>Telephone<br>Fax<br>Factory<br>Address                     | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> <li>/</li> <li>Shenzhen Eview GPS Technology</li> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> </ul>            |
| Address<br>Telephone<br>Fax<br><b>Factory</b><br>Address<br>Telephone | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> <li>/</li> <li>Shenzhen Eview GPS Technology</li> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> </ul> |
| Address<br>Telephone<br>Fax<br>Factory<br>Address                     | <ul> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> <li>/</li> <li>Shenzhen Eview GPS Technology</li> <li>#1203 Building 2, GuoLe Technology Park, Lirong Road,<br/>Dalang, Longhua, Shenzhen, China</li> <li>/</li> </ul> |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

May 20, 2019

Date of issue

# **Revison History**

| Revision | Issue Date   | Revisions     | Revised By  |
|----------|--------------|---------------|-------------|
| 000      | May 20, 2019 | Initial Issue | Gavin Liang |
|          |              |               |             |
|          |              |               |             |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 114

# TABLE OF CONTENTS

| 1. TEST                                               | STANDARDS AND TEST DESCRIPTION                                                                                                                                                                                                                                                                                                         | 6                                                        |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| 1.2.<br>1.3.<br>1.4.<br>1.5.                          | TEST STANDARDS<br>TEST DESCRIPTION<br>PRODUCT DESCRIPTION<br>SUMMARY SAR RESULTS<br>EUT OPERATION MODE<br>EUT CONFIGURATION                                                                                                                                                                                                            |                                                          |  |
| 2. TEST                                               | CENVIRONMENT                                                                                                                                                                                                                                                                                                                           | 10                                                       |  |
| 2.2.<br>2.3.                                          | TEST FACILITY<br>ENVIRONMENTAL CONDITIONS<br>SAR LIMITS<br>EQUIPMENTS USED DURING THE TEST                                                                                                                                                                                                                                             |                                                          |  |
| 3. SAR                                                | MEASUREMENTS SYSTEM CONFIGURATION                                                                                                                                                                                                                                                                                                      |                                                          |  |
| 3.4.<br>3.5.<br>3.6.<br>3.7.<br>3.8.<br>3.9.<br>3.10. | SAR MEASUREMENT SET-UP<br>OPENSAR E-FIELD PROBE SYSTEM<br>PHANTOMS<br>DEVICE HOLDER<br>SCANNING PROCEDURE<br>DATA STORAGE AND EVALUATION<br>POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM<br>TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS<br>DIELECTRIC PERFORMANCE<br>SYSTEM CHECK<br>MEASUREMENT PROCEDURES. | 13<br>14<br>14<br>15<br>15<br>15<br>16<br>23<br>24<br>24 |  |
| <b>4. TES</b>                                         | CONDITIONS AND RESULTS                                                                                                                                                                                                                                                                                                                 |                                                          |  |
| 4.2.<br>4.3.<br>4.4.<br>4.5.                          | Conducted Power Results<br>Test reduction procedure<br>SAR Measurement Results<br>Measurement Uncertainty (450MHz-6GHz)<br>System Check Results<br>SAR Test Graph Results                                                                                                                                                              |                                                          |  |
| 5. ALIB                                               | RATION CETIFICATE                                                                                                                                                                                                                                                                                                                      | 47                                                       |  |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6                | PROBE-EPGO324 CALIBRATION CERTIFICATE<br>SID750 DIPOLE CALIBRATION CERITICATE<br>SID900 DIPOLE CALIBRATION CERITICATE<br>SID1800 DIPOLE CALIBRATION CERTIFICATE<br>SID2000 DIPOLE CALIBRATION CERITICATE<br>SID2450 DIPOLE CALIBRATION CERITICATE                                                                                      |                                                          |  |
| 6. SAR                                                | SYSTEM PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                     | 111                                                      |  |
|                                                       | JP PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                         |                                                          |  |
| 8. EUT                                                | 8. EUT PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                     |                                                          |  |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 114

# **1.TEST STANDARDS AND TEST DESCRIPTION**

# 1.1. Test Standards

The tests were performed according to following standards:

<u>EN 62209-2:2010</u>:Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices.Human models,instrumentation, and procedures.Part 2: Procedure to determine thespecific absorption rate (SAR) forwireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz)

<u>EN 50663:2017</u>:Generic standard for assessment of low power electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (10 MHz - 300 GHz)

<u>EN 50566:2017:</u>Product standard to demonstrate the compliance of wireless communication devices with thebasic restrictions and exposure limit values related to human exposure to electromagnetic fields in the frequency range from 30 MHz to 6 GHz: hand-held and body mounted devices in close proximity to the human body

<u>AS/NZS 2772.2:2016 Amd 1:2018</u>:Radiofrequency fields, Part 2: Principles and methods of measurement and computation - 3 kHz to 300 GHz

# 1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

# **1.3. Product Description**

| Product Name:                | Personal Mobile Alarm System                                                                                                                                       |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Model:                  | EV-07B-4G                                                                                                                                                          |  |
| Additional Model No .:       | 1                                                                                                                                                                  |  |
| Model Declaration:           | 1                                                                                                                                                                  |  |
| Hardware Version             | EV07B-LTE1-V2.01                                                                                                                                                   |  |
| Software Version:            | V1.0.6.25                                                                                                                                                          |  |
| Power supply:                | DC 3.7V by Rechargeable Li-ion Battery (800mAh)<br>Recharged by DC 5V 1000mA Adapter                                                                               |  |
| WCDMA                        |                                                                                                                                                                    |  |
| Operation Band:              | WCDMA Band II(US-Band) WCDMA Band V(US-Band)<br>WCDMA Band I(EU-Band) WCDMA Band VIII(EU-Band)                                                                     |  |
| Power Class:                 | Class 3                                                                                                                                                            |  |
| Uplink                       | WCDMA Band I: 1920MHz ~ 1980MHz<br>WCDMA Band VIII: 880MHz~915MHz                                                                                                  |  |
| Downlink                     | WCDMA Band I: 2110MHz ~ 2170MHz<br>WCDMA Band VIII: 925MHz~960MHz                                                                                                  |  |
| Modulation Type:             | WCDMA: BPSK; HSDPA/HSUPA: BPSK                                                                                                                                     |  |
| WCDMA Release Version:       | R8                                                                                                                                                                 |  |
| DC-HSUPA Release<br>Version: | Not Supported                                                                                                                                                      |  |
| Antenna Description          | PIFA Antenna, -1.42dBi (max.) For WCDMA Band I;<br>-2.67dBi (max.) For WCDMA Band VIII                                                                             |  |
| LTE                          |                                                                                                                                                                    |  |
| Operation Band:              | ☑E-UTRA Band 3(EU-Band) ☑E-UTRA Band 5(No EU-Band)<br>☑E-UTRA Band 28(EU-Band)                                                                                     |  |
| Power Class:                 | Class 3                                                                                                                                                            |  |
| FDD Band                     | Uplink:<br>E-UTRA Band 3: 1710MHz ~ 1785MHz<br>E-UTRA Band 28: 703MHz ~ 748MHz<br>Downlink:<br>E-UTRA Band 3: 1805MHz ~ 1880MHz<br>E-UTRA Band 28: 758MHz ~ 803MHz |  |
| Modulation Type:             | QPSK/16-QAM                                                                                                                                                        |  |
| LTE Release Version:         | R9                                                                                                                                                                 |  |
| Antenna Description:         | PIFA Antenna, -1.57dBi (max.) For LTE Band 3;<br>-3.26dBi (max.) For LTE Band 28                                                                                   |  |
| WIFI                         |                                                                                                                                                                    |  |
| Supported type:              | 802.11b/802.11g/802.11n(HT20)                                                                                                                                      |  |
| Modulation:                  | 802.11b: DSSS, 802.11g/802.11n:OFDM                                                                                                                                |  |
| Operation frequency:         | 802.11b/802.11g/802.11n(HT20): 2412MHz~2472MHz;                                                                                                                    |  |
| Channel number:              | 13 Channel for 20MHz bandwidth(2412~2472MHz)<br>(Not applicable 802.11n-HT40)                                                                                      |  |
| Channel separation:          | 5MHz                                                                                                                                                               |  |
| Antenna Description:         | PIFA Antenna, -0.87dBi (Max.)                                                                                                                                      |  |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 114 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

| Bluetooth            |                               |
|----------------------|-------------------------------|
| Version:             | V4.0                          |
| Modulation:          | GFSK for Bluetooth V4.0(DTS)  |
| Operation frequency: | 2402MHz~2480MHz               |
| Channel number:      | 40                            |
| Channel separation:  | 2MHz                          |
| Antenna Description  | PIFA Antenna, -0.87dBi (Max.) |

## 1.4. Summary SAR Results

| Exposure Configuration | Technolohy Band | Highest Measured SAR<br>10g(W/kg) |
|------------------------|-----------------|-----------------------------------|
|                        | WCDMA Band VIII | 0.030                             |
| Body-worn              | WCDMA Band I    | 0.064                             |
|                        | E-UTRA Band 3   | 0.366                             |
|                        | E-UTRA Band 28  | 0.611                             |
|                        | WLAN2450        | 0.313                             |

Table 1:Max. SAR Measured(10g)

The SAR values found for the EUT below the maximum recommended levels of 2.0W/kg as averaged over for 10g tissue according to EN62209.

The maximum SAR value is obtained at the case of (Table 1), and the maximum value is:0.611W/kg (10g) for Body.

The EUT has one LTE/WCDMA card slot (SIM1). The result for LTE/ WCDMA card slot(SIM1) is the worst case which was only recorded.

## 1.5. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

# 1.6. EUT configuration

### The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\, \odot \,$  supplied by the lab

| 0 | Power Cable | Length (m) :   | / |
|---|-------------|----------------|---|
|   |             | Shield :       | / |
|   |             | Detachable :   | 1 |
| 0 | Multimeter  | Manufacturer : | / |
|   |             | Model No. :    | / |

# 2.TEST ENVIRONMENT

# 2.1. Test Facility

EMC Lab.

The test facility is recognized, certified, or accredited by the following organizations:

- Site Description
- : FCC Registration Number is 254912. Industry Canada Registration Number is 9642A-1. EMSD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001. NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071.

# 2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:          | 18-25 ° C    |
|-----------------------|--------------|
| Humidity:             | 40-65 %      |
| Atmospheric pressure: | 950-1050mbar |

# 2.3. SAR Limits

 CE Limit (10g Tissue)

 EXPOSURE LIMITS

 (General Population / Uncontrolled Exposure Environment)
 (Occupational / Controlled Exposure Environment)

 Spatial Average(averaged over the
 0.08
 0.4

| whole body)                                                  | 0.08 | 0.4  |
|--------------------------------------------------------------|------|------|
| Spatial Peak(averaged over any 1 g of tissue)                | 2.0  | 10   |
| Spatial Peak(hands/wrists/<br>feet/anklesaveraged over 10 g) | 4.0  | 20.0 |

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

# 2.4. Equipments Used during the Test

|                                           |              |                    |                           | Calibr              | ation              |
|-------------------------------------------|--------------|--------------------|---------------------------|---------------------|--------------------|
| Test Equipment                            | Manufacturer | Type/Model         | Serial Number             | Calibration<br>Date | Calibration<br>Due |
| PC                                        | Lenovo       | G5005              | MY42081102                | N/A                 | N/A                |
| SAR Measurement<br>system                 | SATIMO       | 4014_01            | SAR_4014_01               | N/A                 | N/A                |
| Signal Generator                          | Angilent     | E4438C             | MY42081396                | 06/16/2018          | 06/15/2019         |
| Multimeter                                | Keithley     | MiltiMeter<br>2000 | 4059164                   | 06/16/2018          | 06/15/2019         |
| S-parameter Network<br>Analyzer           | Agilent      | 8753ES             | US38432944                | 11/15/2018          | 11/14/2019         |
| Wideband Radia<br>Communication<br>Tester | R&S          | CMW500             | 1201.0002K50              | 11/15/2018          | 11/14/2019         |
| E-Field PROBE                             | SATIMO       | SSE2               | SN 31/17<br>EPGO324       | 10/08/2018          | 10/07/2019         |
| DIPOLE 750                                | SATIMO       | SID 750            | SN 30/14 DIP<br>0G750-302 | 10/01/2015          | 09/30/2018         |
| DIPOLE 900                                | SATIMO       | SID 900            | SN 07/14 DIP<br>0G900-300 | 10/01/2018          | 09/30/2021         |
| DIPOLE 1800                               | SATIMO       | SID 1800           | SN 07/14 DIP<br>1G800-301 | 10/01/2018          | 09/30/2021         |
| DIPOLE 2000                               | SATIMO       | SID 2000           | SN 07/14 DIP<br>2G000-305 | 10/01/2018          | 09/30/2021         |
| DIPOLE 2450                               | SATIMO       | SID 2450           | SN 07/14 DIP<br>2G450-306 | 10/01/2018          | 09/30/2021         |
| Power meter                               | Agilent      | E4419B             | MY45104493                | 06/16/2018          | 06/15/2019         |
| Power meter                               | Agilent      | E4418B             | GB4331256                 | 06/16/2018          | 06/15/2019         |
| Power sensor                              | Agilent      | E9301H             | MY41497725                | 06/16/2018          | 06/15/2019         |
| Power sensor                              | Agilent      | E9301H             | MY41495234                | 06/16/2018          | 06/15/2019         |
| Directional Coupler                       | MCLI/USA     | 4426-20            | 0D2L51502                 | 06/16/2018          | 06/15/2019         |
| Mobile Phone<br>POSITIONING<br>DEVICE     | SATIMO       | MSH98              | SN 40/14<br>MSH98         | N/A                 | N/A                |
| SAM PHANTOM                               | SATIMO       | SAM117             | SN 40/14<br>SAM117        | N/A                 | N/A                |
| COMOSAR OPEN<br>Coaxial Probe             | SATIMO       | OCPG 68            | SN 40/14<br>OCPG68        | N/A                 | N/A                |
| Liquid measurement<br>Kit                 | HP           | 85033D             | 3423A03482                | N/A                 | N/A                |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 114

# **3.SAR MEASUREMENTS SYSTEM CONFIGURATION**

# 3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

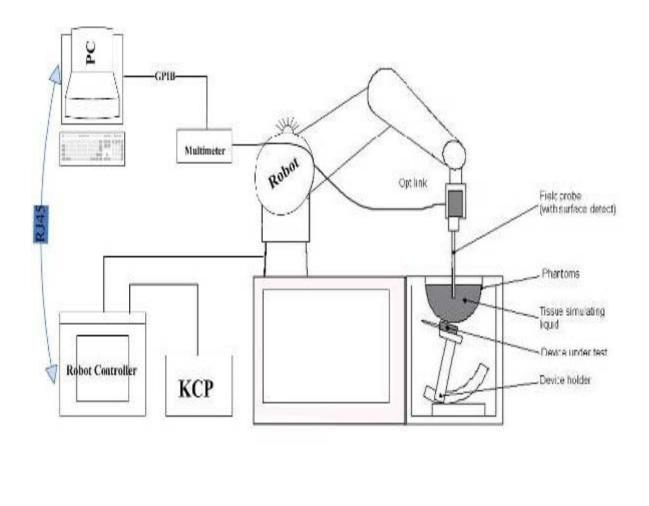
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

**OPENSAR** software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.



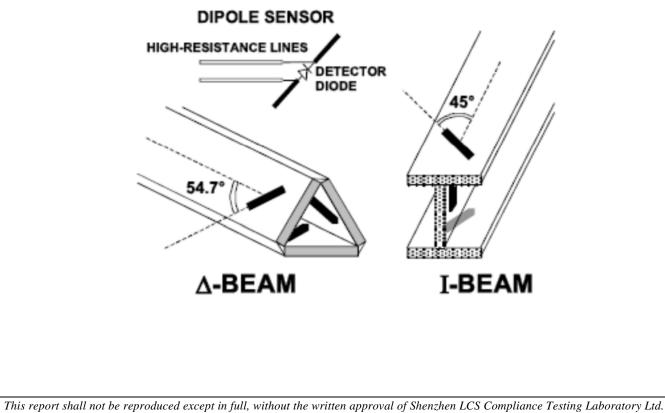
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 114

## 3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

| Frequency     | 450 MHz to 6 GHz;<br>Linearity:0.25dB(450 MHz to 6 GHz)                                                                    | 0 |
|---------------|----------------------------------------------------------------------------------------------------------------------------|---|
| Directivity   | 0.25 dB in HSL (rotation around probe axis)<br>0.5 dB in tissue material (rotation normal to probe axis)                   |   |
| Dynamic Range | 0.01W/kg to > 100 W/kg;<br>Linearity: 0.25 dB                                                                              | - |
| Dimensions    | Overall length: 330 mm (Tip: 16mm)<br>Tip diameter: 5 mm (Body: 8 mm)<br>Distance from probe tip to sensor centers: 2.5 mm |   |
| Application   | General dosimetry up to 6 GHz<br>Dosimetry in strong gradient fields<br>Compliance tests of Handheld terminals             |   |

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



Page 13 of 114

### 3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.



SAM Twin Phantom

## 3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).



Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 114

### 3.5. Scanning Procedure

### The procedure for assessing the peak spatial-average SAR value consists of the following steps

### Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

### Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. Thesophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

### Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures  $5 \times 5 \times 4$  points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

### Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

# 3.6. Data Storage and Evaluation

### Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm<sup>2</sup>], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

### Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

| Probe parameters: - Sensitivity  | Normi, ai0, ai1, ai2 |
|----------------------------------|----------------------|
| - Conversion                     | factor ConvFi        |
| - Diode comp                     | pression point Dcpi  |
| Device parameters: - Frequency   | f                    |
| - Crest factor                   | cf                   |
| Media parameters: - Conductivity | σ                    |
| - Density                        | ρ                    |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 114

#### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

Report No.: LCS190415004AEB

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{lll} \mathrm{E-field probes}: & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ \mathrm{H-field probes}: & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \\ \end{array} \\ \mbox{With} & \mathsf{Vi} & = \mbox{compensated signal of channel i} & (\mathsf{i} = \mathsf{x}, \mathsf{y}, \mathsf{z}) \\ \mathrm{Normi} & = \mbox{sensor sensitivity of channel i} & (\mathsf{i} = \mathsf{x}, \mathsf{y}, \mathsf{z}) \\ & [\mathsf{mV}/(\mathsf{V}/\mathsf{m})2] \mbox{ for E-field Probes} \\ \mbox{ConvF} & = \mbox{sensor sensitivity factors for H-field probes} \\ \end{array}$$

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

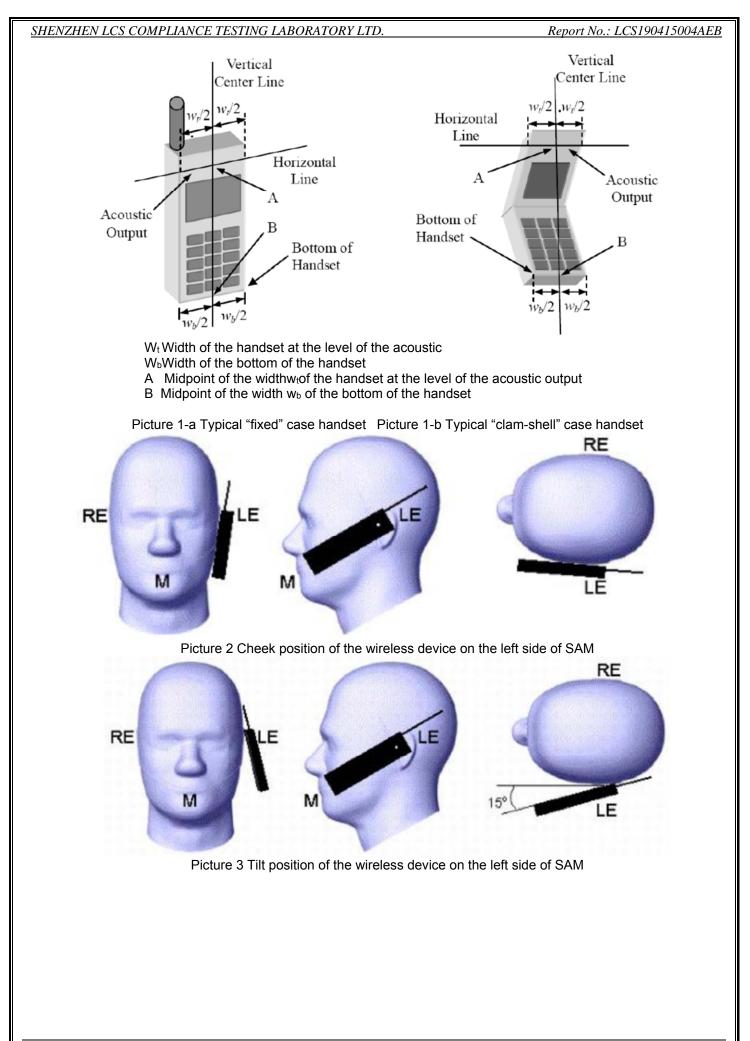
 $\sigma$  = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

### 3.7. Position of the wireless device in relation to the phantom

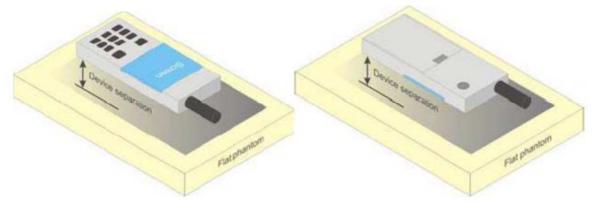
#### **General considerations**


This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770}$$
 or  $P_{(\text{pwe})} = H^2_{\text{tot}}.37.7$ 

Where P<sub>pwe</sub>=Equivalent power density of a plane wave in mW/cm2 E<sub>tot</sub>=total electric field strength in V/m H<sub>tot</sub>=total magnetic field strength in A/m


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 114



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 114

#### Body-worn device

A typical example of a body-worn device is a Handheld terminal, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.



Picture 4 Test positions for body-worn devices

#### Devices with hinged or swivel antenna(s)

For devices that employ one or more external antennas with variable positions (e.g. antenna extended, retracted, rotated), these shall be positioned in accordance with the user instructions provided by the manufacturer. For a device with only one antenna, if no intended antenna position is specified, tests shall be performed if applicable in both the horizontal and vertical positions relative to the phantom, and with the antenna oriented away from the body of the DUT (Figure 5) and/or with the antenna extended and retracted such as to obtain the highest exposure condition. For antennas that may be rotated through one or two planes, an evaluation should be made and documented in the measurement report to the highest exposure scenario and only that position(s) need(s) to be tested. For devices with multiple detachable antennas see provisions of 6.2.2.

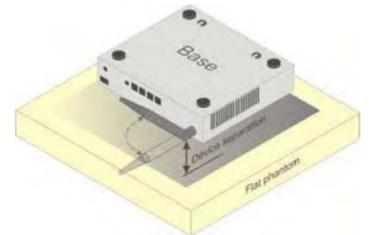



Figure 5– Device with swivel antenna (example of desktop device)

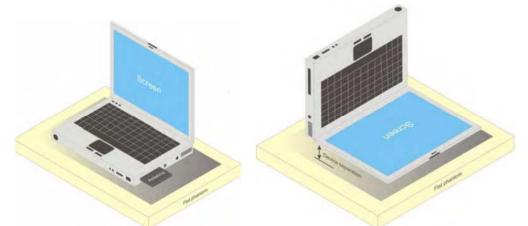
### **Body-supported device**

A typical example of a body supported device is a wireless enabled laptop device that among other orientations may be supported on the thighs of a sitting user. To represent this orientation, the device shall be positioned with its base against the flat phantom. Other orientations may be specified by the manufacturer in the user instructions. If the intended use is not specified, the device shall be tested directly against the flat phantom in all usable orientations.

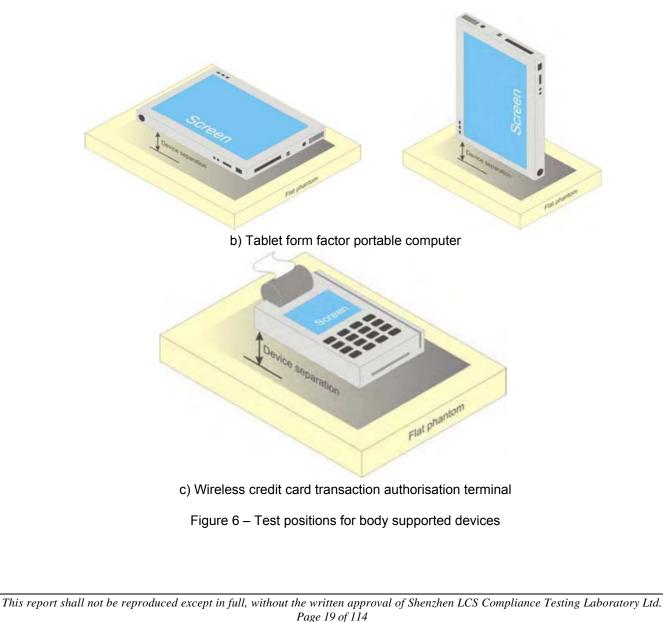
The screen portion of the device shall be in an open position at a 90° angle as seen in Figure 6a (left side), or at an operating angle specified for intended use by the manufacturer in the operating instructions. Where a body supported device has an integral screen required for normal operation, then the screen-side will not need to be tested if the antenna(s) integrated in it ordinarily remain(s) 200 mm from the body. Where a screen mounted antenna is present, the measurement shall be performed with the screen against the flat phantom as shown in Figure 6a) (right side), if operating the screen against the body is consistent with the intended use.

Other devices that fall into this category include tablet type portable computers and credit card transaction authorisation terminals, point-of-sale and/or inventory terminals. Where these devices may be torso or limb-supported, the same principles for body-supported devices are applied.

The example in Figure 6b) shows a tablet form factor portable computer for which SAR should be separately assessed with


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 114

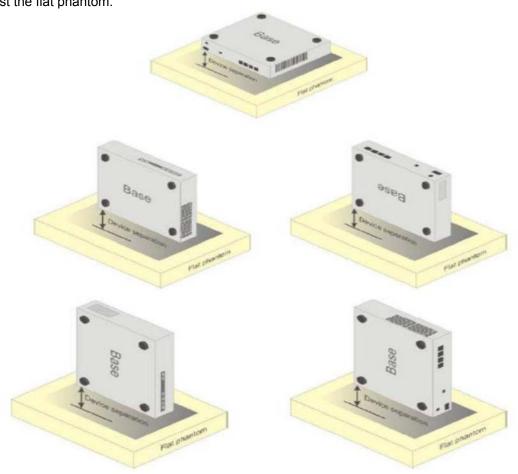
### c). each surface and


d). the separation distances

positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. If the intended use is not specified in the user instructions, the device shall be tested directly against the flat phantom in all usable orientations.

Some body-supported devices may allow testing with an external power supply (e.g. a.c. adapter) supplemental to the battery, but it shall be verified and documented in the measurement report that SAR is still conservative. For devices that employ an external antenna with variable positions (e.g. swivel antenna), see 6.1.4.5 and Figure 5.

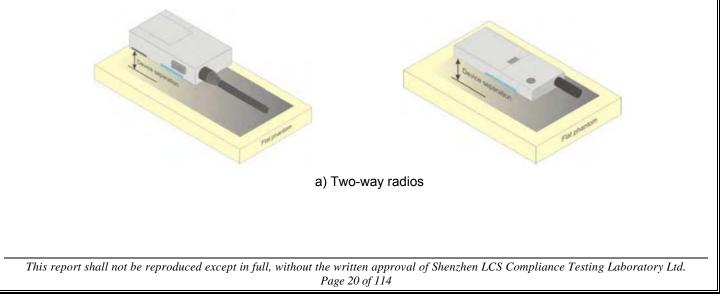



a) Portable computer with external antenna plug-in-radio-card (left side) or with internal antenna located in screen section (right side)



#### Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.


The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 14 shows positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.



Picture 7 Test positions for desktop devices

### Front-of-face device

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions (Figure 8a). If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.



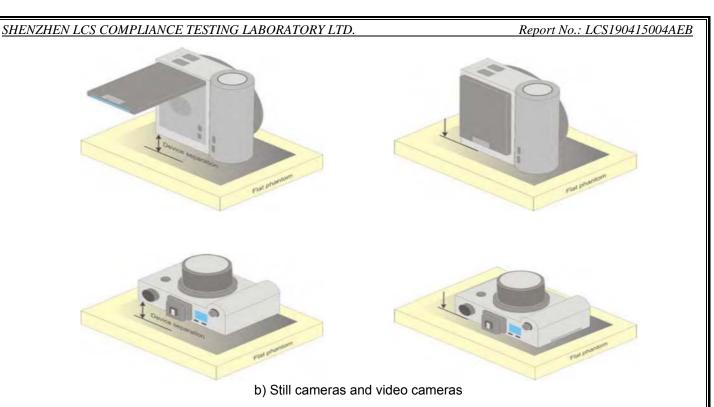



Figure 8 – Test positions for front-of-face devices

Other devices that fall into this category include wireless-enabled still cameras and video cameras that can send data to a network or other device (Figure 8b). In the case of a devicewhose intended use requires a separation distance from the user (e.g., device with a viewing screen), this shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions (Figure 8b, left side). If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

For a device whose intended use requires the user's face to be in contact with the device (e.g., device with an optical viewfinder), this shall be placed directly against the phantom (Figure 8b, right side).

### Hand-held usage of the device, not at the head or torso

Additional studies remain needed for devising a representative method for evaluating SAR in the hand of handheld devices. Future versions of this standard are intended to contain a test method based on scientific data and rationale. Annex J presents the currently available test procedure.

### Limb-worn device

A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device. Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 9. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom.

If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

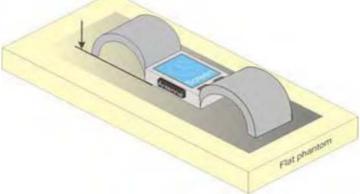



Figure 9 – Test position for limb-worn devices

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 114

#### **Clothing-integrated device**

A typical example of a clothing-integrated device is a wireless device (Handheld terminal) integrated into a jacket to provide voice communications through an embedded speaker and microphone. This category also includes headgear with integrated wireless devices.

All wireless or RF transmitting components shall be placed in the orientation and at the separation distance to the phantom surface that correspond to intended use of the device when it is integrated into the clothing (Figure 10).

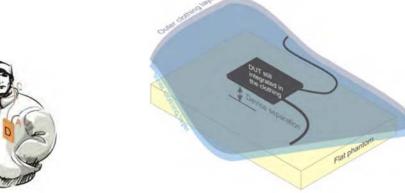



Figure 10– Test position for clothing-integrated wireless devices

# 3.8. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid used for the frequency range of 700-3000 MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 3 and 4 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

| Frequency<br>(MHz) | Bactericide | DGBE  | HEC | NaCl | Sucrose | 1,2-<br>Propan<br>ediol | X100  | Water | Conductivity | Permittivity |
|--------------------|-------------|-------|-----|------|---------|-------------------------|-------|-------|--------------|--------------|
|                    | %           | %     | %   | %    | %       | %                       | %     | %     | σ            | ٤r           |
| 750                | /           | /     | /   | 0.79 | 1       | 64.81                   | /     | 34.40 | 0.97         | 41.8         |
| 835                | /           | /     | /   | 0.79 | /       | 64.81                   | /     | 34.40 | 0.97         | 41.8         |
| 900                | /           | /     | /   | 0.79 | /       | 64.81                   | /     | 34.40 | 0.97         | 41.8         |
| 1800               | /           | 13.84 | /   | 0.35 | /       | /                       | 30.45 | 55.36 | 1.38         | 41.0         |
| 1900               | /           | 13.84 | /   | 0.35 | /       | /                       | 30.45 | 55.36 | 1.38         | 41.0         |
| 2000               | /           | 7.99  | /   | 0.16 | /       | /                       | 19.97 | 71.88 | 1.55         | 41.1         |
| 2450               | /           | 7.99  | /   | 0.16 | /       | /                       | 19.97 | 71.88 | 1.88         | 40.3         |
| 2600               | /           | 7.99  | /   | 0.16 | /       | /                       | 19.97 | 71.88 | 1.88         | 40.3         |

Table 2. Composition of the Head Tissue Equivalent Matter

Table 3. Targets for tissue simulating liquid

| Frequency | Liquid Type | Liquid Type | ± 5% Range | Permittivity | ± 5% Range  |
|-----------|-------------|-------------|------------|--------------|-------------|
| (MHz)     |             | ( o )       |            | (3)          |             |
| 300       | Head        | 0.87        | 0.83~0.91  | 45.30        | 43.04~47.57 |
| 450       | Head        | 0.87        | 0.83~0.91  | 43.50        | 41.33~45.68 |
| 835       | Head        | 0.90        | 0.86~0.95  | 41.50        | 39.43~43.58 |
| 900       | Head        | 0.97        | 0.92~1.02  | 41.50        | 39.43~43.58 |
| 1450      | Head        | 1.20        | 1.14~1.26  | 40.50        | 38.48~42.53 |
| 1800      | Head        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 1900      | Head        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 1950      | Head        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 2000      | Head        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 2450      | Head        | 1.80        | 1.71~1.89  | 39.20        | 37.24~41.16 |
| 3000      | Head        | 2.40        | 2.28~2.52  | 38.50        | 36.58~40.43 |
| 300       | Body        | 0.87        | 0.83~0.91  | 45.30        | 43.04~47.57 |
| 450       | Body        | 0.87        | 0.83~0.91  | 43.50        | 41.33~45.68 |
| 835       | Body        | 0.90        | 0.86~0.95  | 41.50        | 39.43~43.58 |
| 900       | Body        | 0.97        | 0.92~1.02  | 41.50        | 39.43~43.58 |
| 1450      | Body        | 1.20        | 1.14~1.26  | 40.50        | 38.48~42.53 |
| 1800      | Body        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 1900      | Body        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 1950      | Body        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 2000      | Body        | 1.40        | 1.33~1.47  | 40.00        | 38.00~42.00 |
| 2100      | Body        | 1.49        | 1.42~1.56  | 39.80        | 37.81~41.79 |
| 2450      | Body        | 1.80        | 1.71~1.89  | 39.20        | 37.24~41.16 |
| 2600      | Body        | 1.96        | 1.86~2.06  | 39.00        | 37.05~40.95 |
| 3000      | Body        | 2.40        | 2.28~2.52  | 38.50        | 36.58~40.43 |
| 3500      | Body        | 2.91        | 2.77~3.06  | 37.90        | 36.01~39.80 |
| 4000      | Body        | 3.43        | 3.26~3.61  | 37.40        | 35.53~39.27 |
| 4500      | Body        | 4.44        | 3.74~4.14  | 36.80        | 34.96~38.64 |
| 5000      | Body        | 4.45        | 4.23~4.67  | 36.20        | 34.39~38.01 |
| 5200      | Body        | 4.66        | 4.43~4.89  | 36.00        | 34.20~37.80 |
| 5400      | Body        | 4.86        | 4.62~5.10  | 35.80        | 34.01~37.59 |
| 5600      | Body        | 5.07        | 4.82~5.32  | 35.50        | 33.73~37.28 |
| 5800      | Body        | 5.27        | 5.01~5.53  | 35.30        | 33.54~37.07 |
| 6000      | Body        | 5.48        | 5.21~5.75  | 35.10        | 33.35~36.86 |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 114

### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

## 3.9. Dielectric Performance

| Test Engineer:Vera Deng |                         |                         |                  |
|-------------------------|-------------------------|-------------------------|------------------|
| Liquid Frequency        | Measurement temperature | Measurement<br>humidity | Measurement Date |
| 750 MHz                 | <b>24.8</b> ℃           | 53.9%                   | April 16, 2019   |
| 900 MHz                 | <b>23.4</b> ℃           | 53.9%                   | April 18, 2019   |
| 1800 MHz                | <b>23.8</b> ℃           | 53.1%                   | April 19, 2019   |
| 2000 MHz                | <b>23.5℃</b>            | 54.1%                   | May 11, 2019     |
| 2450 MHz                | <b>23.8</b> ℃           | 53.1%                   | May 17, 2019     |

Test Condition and Test Date

| Dielectric Performance of Head Tissue Simulating Liquid |                                             |                                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Target                                                  | Tissue                                      | Measured Tissue                                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| σ                                                       | ٤r                                          | σ                                                                                                                               | Dev.                                                                                                                                                                                                                              | ٤r                                                                                                                                                                                                                                                                                                                                      | Dev.                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 0.89                                                    | 42.06                                       | 0.88                                                                                                                            | -1.12%                                                                                                                                                                                                                            | 41.90                                                                                                                                                                                                                                                                                                                                   | -0.38%                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 0.97                                                    | 41.5                                        | 0.95                                                                                                                            | -2.06%                                                                                                                                                                                                                            | 41.87                                                                                                                                                                                                                                                                                                                                   | 0.89%                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 1.40                                                    | 40.0                                        | 1.41                                                                                                                            | 0.71%                                                                                                                                                                                                                             | 39.55                                                                                                                                                                                                                                                                                                                                   | -1.13%                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 1.40                                                    | 40.0                                        | 1.43                                                                                                                            | 2.14%                                                                                                                                                                                                                             | 41.26                                                                                                                                                                                                                                                                                                                                   | 3.15%                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 1.80                                                    | 39.2                                        | 1.79                                                                                                                            | -0.56%                                                                                                                                                                                                                            | 39.64                                                                                                                                                                                                                                                                                                                                   | 1.12%                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                         | Target<br>σ<br>0.89<br>0.97<br>1.40<br>1.40 | σ         ε <sub>r</sub> 0.89         42.06           0.97         41.5           1.40         40.0           1.40         40.0 | Target Tissue         σ           σ         ε <sub>r</sub> σ           0.89         42.06         0.88           0.97         41.5         0.95           1.40         40.0         1.41           1.40         40.0         1.43 | $\begin{tabular}{ c c c c c c } \hline Target Tissue & Measured \\ \hline $\sigma$ & $\epsilon_r$ & $\sigma$ & Dev. \\ \hline $0.89$ & $42.06$ & $0.88$ & $-1.12\%$ \\ \hline $0.97$ & $41.5$ & $0.95$ & $-2.06\%$ \\ \hline $1.40$ & $40.0$ & $1.41$ & $0.71\%$ \\ \hline $1.40$ & $40.0$ & $1.43$ & $2.14\%$ \\ \hline \end{tabular}$ | $\begin{tabular}{ c c c c c c c } \hline Target Tissue & Measured Tissue \\ \hline \sigma & $\epsilon_r$ & $\sigma$ & Dev. & $\epsilon_r$ \\ \hline 0.89 & 42.06 & 0.88 & -1.12\% & 41.90 \\ \hline 0.97 & 41.5 & 0.95 & -2.06\% & 41.87 \\ \hline 1.40 & 40.0 & 1.41 & 0.71\% & 39.55 \\ \hline 1.40 & 40.0 & 1.43 & 2.14\% & 41.26 \\ \hline \end{tabular}$ |  |  |  |  |  |

## 3.10. System Check

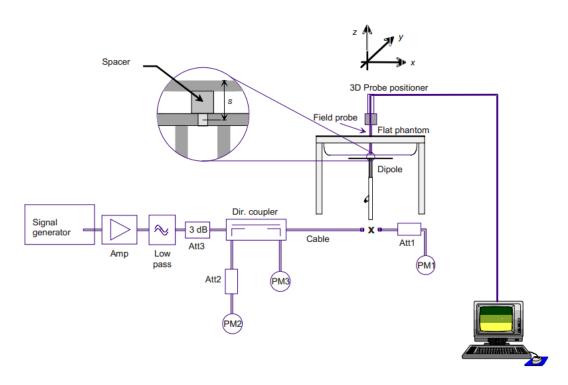



Figure B.1 – Set-up for the system check

#### Test set-up for the system check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 114

### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Report No.: LCS190415004AEB

the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1 Signal Generator
- 2 Amplifier
- 3 Directional Coupler
- 4 Power Meter
- 5 Calibrated Dipole

The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

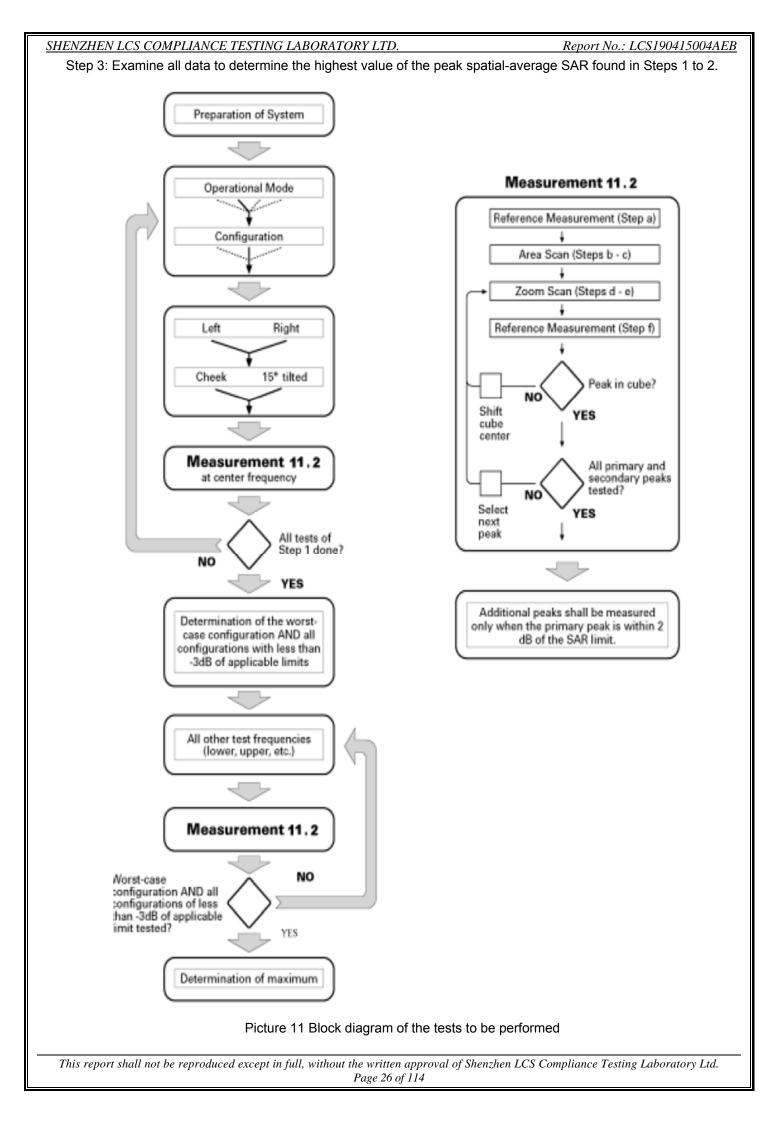


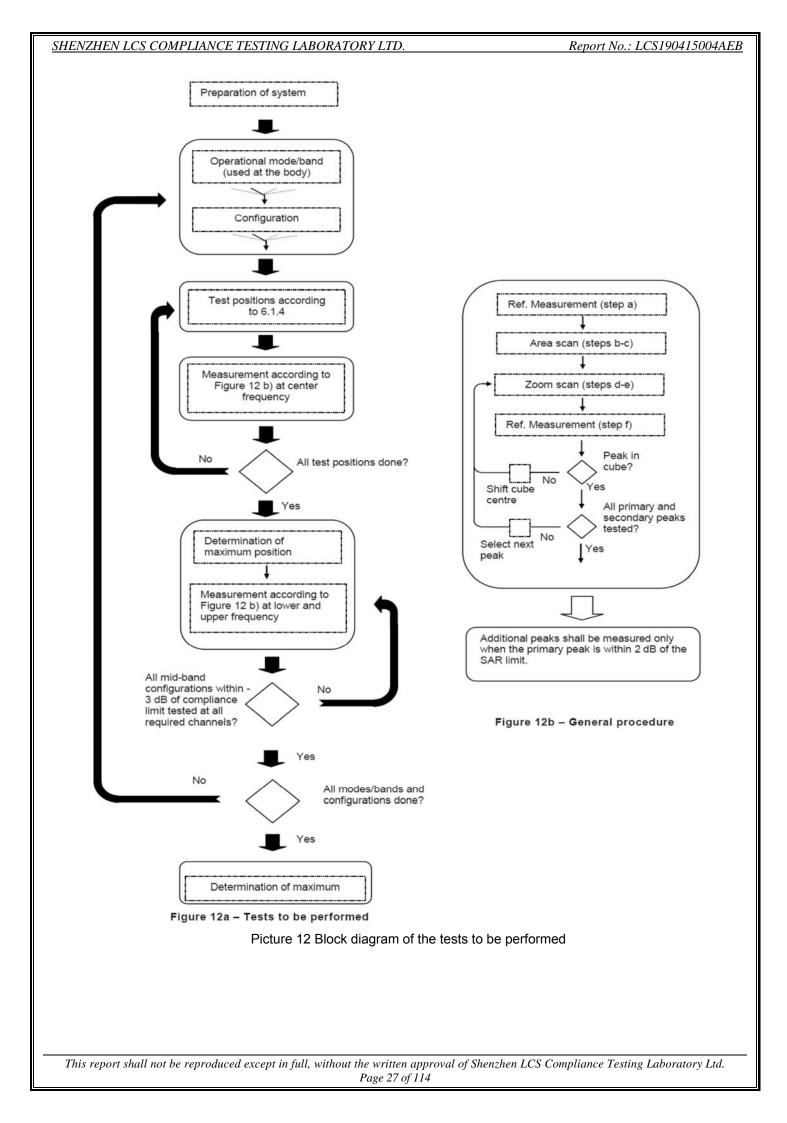
Photo of Dipole Setup

| Frequency           |       | •              | t value<br>/kg) |                | ed value<br>′kg) | Deviation      |                 |  |
|---------------------|-------|----------------|-----------------|----------------|------------------|----------------|-----------------|--|
| ) (a rifi a ati a r | (MHz) | 1 g<br>Average | 10 g<br>Average | 1 g<br>Average | 10 g<br>Average  | 1 g<br>Average | 10 g<br>Average |  |
| Verification        | 750   | 8.49           | 5.55            | 8.71           | 5.53             | 2.591          | -0.360          |  |
| results             | 900   | 10.9           | 6.99            | 10.6           | 6.78             | -2.75%         | -3.00%          |  |
|                     | 1800  | 38.4           | 20.1            | 40.2           | 18.9             | 4.69%          | -5.97%          |  |
|                     | 2000  | 41.1           | 21.1            | 42.6           | 20.2             | 3.65%          | -4.27%          |  |
|                     | 2450  | 52.4           | 24.0            | 49.8           | 23.5             | -4.96%         | -2.08%          |  |

## 3.11. Measurement Procedures

### Tests to be performed


In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11


Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f<sub>c</sub>) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.
- d) If more than three frequencies need to be tested according to 11.1 (i.e., N<sub>c</sub>> 3), then allfrequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 114





### Measurement procedure

- The following procedure shall be performed for each of the test conditions (see Picture 11) described in 11.1:
- a) Measure the local SAR at a test point within 4 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of localmaximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and SHz and greater, whereois theplane wave skin depth and In(x) is the natural logarithm. The maximum variation of thesensor-phantom surface shall be ±1 mm for frequencies below 3 GHz and ±0.5 mm forfrequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for ameasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface shorter than the probe diameter, additionalmeasurement distance to the phantom inner surface
- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;
- d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step
- e) The horizontal grid step shall be (24 / f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and  $\delta \ln(2)/2$  mm for frequencies of 3 GHz and greater, where  $\delta$  is the plane wave skin depth and  $\ln(x)$  is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima foundin step c). Uncertainties due to field distortion between the media boundary and the dielectricenclosure of the probe should also be minimized, which is achieved is the distance between thephantom surface and physical tip of the probe is larger than probe tip diameter. Other methodsmay utilize correction procedures for these boundary effects that enable high precisionmeasurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5. If this cannot be achieved an additional uncertainty evaluation is needed.
- f) Use post processing( e.g. interpolation and extrapolation ) procedures to determine the localSAR values at the spatial resolution needed for mass averaging.

### WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99,Release 5 and Release 6. The default test configuration is to measure SAR with an establishedradio link between the DUT and a communication test set using a 12.2kbps RMC (referencemeasurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for otherphysical channel configurations (DPCCH & DPDCH), HSDPA and HSPA (HSUPA/HSDPA)modes according to output power, exposure conditions and device operating capabilities. Bothuplink and downlink should be configured with the same RMC or AMR, when required. SAR forRelease 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed referencechannel) and E-DCH reference channel configurations. Maximum output power is verified

according to applicable versions of 3GPP TS 34.121 and SAR must be measured according tothesemaximum output conditions. When Maximum Power Reduction (MPR) is not implementedaccording to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do notapply.

| SHENZH       | HENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. Report No.: LCS190415004AEB |       |            |                       |       |         |               |   |             |                |            |             |             |            |
|--------------|----------------------------------------------------------------------------|-------|------------|-----------------------|-------|---------|---------------|---|-------------|----------------|------------|-------------|-------------|------------|
| For F        | For Release 5 HSDPA Data Devices:                                          |       |            |                       |       |         |               |   |             |                |            |             |             |            |
| Sub          | -test                                                                      | ſ     | <b>3</b> c |                       | βd    | βd      | (SF)          |   | βc /        | βa             | βμ         | s           | CM/         | dB         |
| 1            | l                                                                          | 2/    | 15         |                       | 15/15 |         | 64            |   | 2/1         | 15 4/1         |            | 5           | 0.0         |            |
| 2            | 2                                                                          | 12    | /15        |                       | 15/15 |         | 64            |   | 12/15       |                | 24/2       | 25          | 1.0         |            |
| 3            | 3                                                                          | 15    | /15        |                       | 8/15  |         | 64            |   | 15/8        | 3              | 30/1       | 30/15       |             | 5          |
| 4            | ł                                                                          | 15    | /15        |                       | 4/15  |         | 64 15/4 30/15 |   | 15          | 1.             | 5          |             |             |            |
| For F        | Release                                                                    | 6 HSU | PA Da      | ta Devi               | ces   | ·       |               |   |             |                |            |             |             |            |
| Sub-<br>test | βc                                                                         | βd    | βd<br>(SF) | $\beta_c$ / $\beta_d$ | βhs   | βec     | ßed           |   | βed<br>(SF) | βed<br>(codes) | CM<br>(dB) | MPR<br>(dB) | AG<br>Index | E-<br>TFCI |
| 1            | 11/15                                                                      | 15/15 | 64         | 11/15                 | 22/15 | 209/225 | 1039/22       | 5 | 4           | 1              | 1.0        | 0.0         | 20          | 75         |
| 2            | 6/15                                                                       | 15/15 | 64         | 6/15                  | 12/15 | 12/15   | 12/15         |   | 4           | 1              | 3.0        | 2.0         | 12          | 67         |

βed1:47/15

βed2 :47/15

56/75

134/15

3

4

5

15/15

2/15

15/15

9/15

15/15

15/15

64

64

64

15/9

2/15

15/15

30/15

4/15

24/15

30/15

4/15

30/15

2

1

1

2.0

3.0

1.0

1.0

2.0

0.0

15

17

21

92

71

81

4

4

4

# 4.TEST CONDITIONS AND RESULTS

## 4.1. Conducted Power Results

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

|              | band     | FDD Bar | nd VIII resu | ılt (dBm) | FDD Band I result (dBm) |       |       |  |
|--------------|----------|---------|--------------|-----------|-------------------------|-------|-------|--|
| Item         | Danu     | Т       | est Chann    | el        | Test Channel            |       |       |  |
|              | Sub-test | 2713    | 2788         | 2862      | 9612                    | 9750  | 9888  |  |
| WCDMA        | ١        | 23.22   | 23.33        | 23.28     | 23.26                   | 23.34 | 23.22 |  |
|              | 1        | 22.15   | 22.23        | 22.18     | 22.22                   | 22.25 | 22.18 |  |
| HSDPA        | 2        | 22.08   | 21.92        | 22.07     | 22.00                   | 21.95 | 21.99 |  |
| <b>HODFA</b> | 3        | 21.91   | 21.74        | 21.70     | 21.76                   | 21.83 | 21.83 |  |
|              | 4        | 21.70   | 21.39        | 21.47     | 21.44                   | 21.53 | 21.77 |  |
|              | 1        | 22.29   | 22.36        | 22.27     | 22.27                   | 22.40 | 22.22 |  |
|              | 2        | 22.12   | 22.29        | 22.04     | 22.00                   | 22.15 | 22.07 |  |
| HSUPA        | 3        | 21.98   | 22.10        | 22.04     | 22.08                   | 22.07 | 21.83 |  |
|              | 4        | 21.88   | 22.16        | 21.87     | 21.84                   | 22.15 | 21.69 |  |
|              | 5        | 21.85   | 21.97        | 21.87     | 21.66                   | 22.02 | 21.54 |  |

#### The conducted power measurement results for WCDMA

#### The conducted power measurement results for WLAN

| Mode           | Channel | Frequency<br>(MHz) | Conducted<br>Output Power | Test Rate Data |
|----------------|---------|--------------------|---------------------------|----------------|
|                |         | 0.1.10             | (dBm)                     | 4.5.4          |
|                | 1       | 2412               | 16.68                     | 1 Mbps         |
| 802.11b        | 7       | 2442               | 15.29                     | 1 Mbps         |
|                | 13      | 2472               | 17.11                     | 1 Mbps         |
|                | 1       | 2412               | 11.69                     | 6 Mbps         |
| 802.11g        | 7       | 2442               | 13.60                     | 6 Mbps         |
|                | 13      | 2472               | 11.86                     | 6 Mbps         |
| 802.11n(20MHz) | 1       | 2412               | 11.34                     | 6.5 Mbps       |
|                | 7       | 2442               | 13.79                     | 6.5 Mbps       |
|                | 13      | 2472               | 12.42                     | 6.5 Mbps       |

| Ine  | conauctea power m | easurement results fol | r Bluetooth V4.0          |
|------|-------------------|------------------------|---------------------------|
| Mode | Channel           | Frequency<br>(MHz)     | Conducted Output<br>Power |
|      |                   |                        | (dBm)                     |
|      | 00                | 2402                   | 1.68                      |
| BLE  | 19                | 2440                   | 2.41                      |
|      | 39                | 2480                   | 2.24                      |

#### The conducted power measurement results for BluetoothV4.0

*Note:* 1. beause the ouput power(eirp) of Bluetooth of the EUT is less than 20mW(13dBm), so standalone SAR are exempt according EN50663.

2. The EUT contains G-sensor and it do not affect the output power.

# The conducted power measurement results for LTE LTE-BAND3

|                   |              | RB alle    | ocation      |                             |                               |                 |       |       |
|-------------------|--------------|------------|--------------|-----------------------------|-------------------------------|-----------------|-------|-------|
| Channel Bandwidth | Channel      | RB<br>Size | RB<br>Offset | Average Power (dBm)<br>QPSK | Average Power (dBm)<br>16-QAM |                 |       |       |
|                   |              | _          | 0            | 22.84                       | 22.81                         |                 |       |       |
|                   | Low          | 1          | max          | 22.89                       | 22.86                         |                 |       |       |
|                   | range        | Destist    | 0            | 22.52                       | 22.46                         |                 |       |       |
|                   |              | Partial    | max          | 22.34                       | 22.27                         |                 |       |       |
|                   |              | 4          | 0            | 22.26                       | 22.33                         |                 |       |       |
| 4 4141-           | Mid          | 1          | max          | 22.70                       | 22.66                         |                 |       |       |
| 1.4MHz            | range        | Dortial    | 0            | 22.45                       | 22.42                         |                 |       |       |
|                   |              | Partial    | max          | 22.34                       | 22.41                         |                 |       |       |
|                   |              |            | 0            | 22.43                       | 22.48                         |                 |       |       |
|                   | High         | 1          | max          | 22.17                       | 22.20                         |                 |       |       |
|                   | range        | Deutiel    | 0            | 22.13                       | 22.14                         |                 |       |       |
|                   |              | Partial    | max          | 22.59                       | 22.62                         |                 |       |       |
|                   |              | 4          | 0            | 22.31                       | 22.30                         |                 |       |       |
|                   | Low<br>range | 1          | max          | 22.48                       | 22.42                         |                 |       |       |
|                   |              | Partial    | 0            | 22.05                       | 22.02                         |                 |       |       |
|                   |              |            | max          | 22.05                       | 22.03                         |                 |       |       |
|                   | Mid<br>range |            |              |                             | 0                             | 22.75           | 22.73 |       |
| <b>- N</b> (1)    |              | 1          | max          | 22.33                       | 22.33                         |                 |       |       |
| 5 MHz             |              | range      | range        | range                       | range                         | ange<br>Partial | 0     | 22.58 |
|                   |              | Partial    | max          | 22.84                       | 22.84                         |                 |       |       |
|                   |              |            | 0            | 22.02                       | 22.08                         |                 |       |       |
|                   | High         | 1          | max          | 22.83                       | 22.89                         |                 |       |       |
|                   | range        | Destist    | 0            | 22.82                       | 22.83                         |                 |       |       |
|                   |              | Partial    | max          | 22.35                       | 22.35                         |                 |       |       |
|                   |              | 4          | 0            | 22.27                       | 22.27                         |                 |       |       |
|                   | Low          | 1          | max          | 22.53                       | 22.53                         |                 |       |       |
|                   | range        | Deutiel    | 0            | 22.66                       | 22.70                         |                 |       |       |
|                   |              | Partial    | max          | 22.45                       | 22.46                         |                 |       |       |
|                   |              | 4          | 0            | 22.02                       | 22.00                         |                 |       |       |
| 201411-           | Mid          | 1          | max          | 22.40                       | 22.38                         |                 |       |       |
| 20MHz             | range        | Dortio     | 0            | 22.34                       | 22.40                         |                 |       |       |
|                   |              | Partial    | max          | 22.52                       | 22.52                         |                 |       |       |
|                   |              | 4          | 0            | 23.00                       | 22.99                         |                 |       |       |
|                   | High         | 1          | max          | 23.13                       | 23.09                         |                 |       |       |
|                   | range        | Partial    | 0            | 22.93                       | 23.00                         |                 |       |       |
|                   |              | Partial    | max          | 22.95                       | 22.97                         |                 |       |       |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 114

### LTE-BAND 28

|                   |              | RB all     | ocation      |                             |                               |         |       |       |
|-------------------|--------------|------------|--------------|-----------------------------|-------------------------------|---------|-------|-------|
| Channel Bandwidth | Channel      | RB<br>Size | RB<br>Offset | Average Power (dBm)<br>QPSK | Average Power (dBm)<br>16-QAM |         |       |       |
|                   |              | 4          | 0            | 22.47                       | 22.45                         |         |       |       |
| 1                 | Low          | 1          | max          | 22.45                       | 22.49                         |         |       |       |
|                   | range        | Dertial    | 0            | 22.27                       | 22.26                         |         |       |       |
| 1                 |              | Partial    | max          | 22.12                       | 22.15                         |         |       |       |
| 1                 |              | 4          | 0            | 22.83                       | 22.83                         |         |       |       |
| 21411-            | Mid          | 1          | max          | 22.47                       | 22.42                         |         |       |       |
| 3MHz              | range        | Dertial    | 0            | 22.44                       | 22.46                         |         |       |       |
|                   |              | Partial    | max          | 22.30                       | 22.33                         |         |       |       |
|                   |              | 4          | 0            | 22.50                       | 22.57                         |         |       |       |
|                   | High         | 1          | max          | 22.26                       | 22.30                         |         |       |       |
|                   | range        | Deutiel    | 0            | 22.20                       | 22.16                         |         |       |       |
|                   |              | Partial    | max          | 22.55                       | 22.53                         |         |       |       |
|                   |              | 4          | 0            | 22.80                       | 22.72                         |         |       |       |
|                   | Low<br>range | 1          | max          | 22.33                       | 22.32                         |         |       |       |
|                   |              | Partial    | 0            | 22.36                       | 22.36                         |         |       |       |
|                   |              |            | max          | 22.38                       | 22.45                         |         |       |       |
|                   | Mid<br>range |            |              |                             | 0                             | 22.68   | 22.66 |       |
|                   |              | 1          | max          | 22.32                       | 22.36                         |         |       |       |
| 5 MHz             |              |            |              |                             | range                         | Deutiel | 0     | 22.53 |
|                   |              | Partial    | max          | 22.94                       | 22.88                         |         |       |       |
|                   |              | 4          | 0            | 22.34                       | 22.35                         |         |       |       |
|                   | High         | 1          | max          | 22.53                       | 22.53                         |         |       |       |
|                   | range        | Destist    | 0            | 22.69                       | 22.76                         |         |       |       |
|                   |              | Partial    | max          | 22.20                       | 22.28                         |         |       |       |
|                   |              |            | 0            | 22.39                       | 22.36                         |         |       |       |
|                   | Low          | 1          | max          | 22.04                       | 22.00                         |         |       |       |
|                   | range        | Destist    | 0            | 22.43                       | 22.42                         |         |       |       |
|                   |              | Partial    | max          | 22.57                       | 22.60                         |         |       |       |
|                   |              |            | 0            | 22.13                       | 22.15                         |         |       |       |
| 001411            | Mid          | 1          | max          | 22.43                       | 22.39                         |         |       |       |
| 20MHz             | range        | Destitut   | 0            | 22.69                       | 22.69                         |         |       |       |
|                   |              | Partial    | max          | 22.52                       | 22.58                         |         |       |       |
|                   |              |            | 0            | 22.43                       | 22.47                         |         |       |       |
|                   | High         | 1          | max          | 22.35                       | 22.35                         |         |       |       |
|                   | range        | Destitut   | 0            | 22.53                       | 22.54                         |         |       |       |
|                   |              | Partial    | max          | 22.29                       | 22.26                         |         |       |       |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 114

## 4.2. Test reduction procedure

### Maximum power level

The maximum power level,  $P_{max,m}$ , that can be transmitted by a device before the SAR averaged over a mass, m, exceeds a given limit, SAR<sub>im</sub>, can be defined. Any device transmitting at power levels below  $P_{max,m}$  can then be excluded from SAR testing. The lowest possible value for  $P_{max,m}$  is:  $P_{max,m} = SAR_{lim}^* m$ . When working alone, the averages transmit power of BT module should be less than 20mW. According to the test results, when working alone, the testing of BT module is not necessary.

### Simultaneous Multi-band Transmission SAR Analysis List of Mode for Simultaneous Multi-band

### Transmission

| No. | Configurations    | Head SAR | Body SAR |  |
|-----|-------------------|----------|----------|--|
| 1   | WCDMA + WLAN      | Yes      | Yes      |  |
| 2   | LTE+ WLAN         | Yes      | Yes      |  |
| 3   | WCDMA + Bluetooth | Yes      | Yes      |  |
| 4   | LTE+ Bluetooth    | Yes      | Yes      |  |

### Remark:

One way of determining the threshold power level available to the secondary transmitter ( $P_{available}$ ) is to calculate it from the measured peak spatial-average SAR of the primary transmitter (SAR<sub>1</sub>) according to the equation:

 $P_{\text{available}} = P_{\text{th,m}} \times (\text{SAR}_{\text{lim}} - \text{SAR}_1) / \text{SAR}_{\text{lim}}$ 

where  $P_{th,m}$  is the threshold exclusion power level taken from Annex B of EN 50663 for the frequency of the secondary transmitter at the separation distance used in the testing.

For simultaneous transmission analysis, Bluetooth SAR is below:

Bluetooth:

|      | Average<br>Power (dBm) | Output Power<br>(mW) | Pth,m (mW) | SARIim (W/kg) | SAR₁ (W/kg) | P <sub>available</sub><br>(mW) |
|------|------------------------|----------------------|------------|---------------|-------------|--------------------------------|
| Body | 2.41                   | 1.742                | 20         | 2.0           | 0.611       | 13.89                          |

The Bluetooth output power of the secondary transmitter is less than  $P_{available}$ , So SAR measurement for the secondary transmitter is not necessary.

Maximum SAR value and the sum of the 10-g SAR for WWAN &WLAN - Body

| WWAN Band | WWAN<br>Max SAR<br>(W/kg) | 2.4GWLAN<br>Max SAR<br>(W/kg) | Max SAR<br>Sum<br>(W/kg) | Limit<br>(W/kg) |
|-----------|---------------------------|-------------------------------|--------------------------|-----------------|
| WCDMA900  | 0.030                     | 0.313                         | 0.343                    |                 |
| WCDMA2100 | 0.064                     | 0.313                         | 0.377                    | 2.0             |
| LTE 3     | 0.366                     | 0.313                         | 0.679                    | 2.0             |
| LTE 28    | 0.611                     | 0.313                         | 0.924                    |                 |

#### Remark:

- 1 WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2 WCDMA and LTE share the same antenna, and cannot transmit simultaneously.
- 3 The maximum SAR summation is calculated based on the same configuration and test position.
- If 10g-SAR summation < 2.0W/kg , simultaneous SAR measurement is not necessary.
- 4 When the maximum SAR summation ≥1.0W/kg on Body, WWAN, WLAN2.4G for low and high Channels are necessary to be tested and the test results please refer to the SAR Measurement Results.

### 4.3. SAR Measurement Results

#### SAR Values forWCDMABand VIII -Body

| Frequency |         | Mode/Band | Test     | Spacing(mm) | SAR(10g) | Power    | Ref.Plot |
|-----------|---------|-----------|----------|-------------|----------|----------|----------|
| MHz       | Channel | wode/band | Position | Spacing(mm) | (W/kg)   | Drift(%) | #        |
| 897.4     | 2788    | RMC       | Front    | 0           | 0.015    | 2.85     |          |
| 897.4     | 2788    | RMC       | Rear     | 0           | 0.303    | -1.03    | 1        |

#### Note:

1. When the 10-g SAR is  $\leq$  1.0W/kg, testing for low and high channel is optional.

2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode

#### SAR Values forWCDMA Band I-Body

| Frequer | ncy     | Test      |          | •           | SAR(10g) | Power    | Ref.Plot |
|---------|---------|-----------|----------|-------------|----------|----------|----------|
| MHz     | Channel | Mode/Band | Position | Spacing(mm) | (W/kg)   | Drift(%) | #        |
| 1950.0  | 9750    | RMC       | Front    | 0           | 0.064    | -0.83    | 2        |
| 1950.0  | 9750    | RMC       | Rear     | 0           | 0.055    | 3.95     |          |

#### Note:

1. When the 10-g SAR is  $\leq$  1.0W/kg, testing for low and high channel is optional.

2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode.

#### SAR Values for WLAN2450 Band -Body

| Frequ  | lency   | Mode/Band | Test     | Spacing(mm) | SAR(10g) | Power    | Ref.Plot |
|--------|---------|-----------|----------|-------------|----------|----------|----------|
| MHz    | Channel | WOUE/Danu | Position | Spacing(mm) | (W/kg)   | Drift(%) | #        |
| 2442.0 | 7       | 802.11b   | Front    | 0           | 0.313    | -0.37    | 3        |
| 2442.0 | 7       | 802.11b   | Rear     | 0           | 0.264    | 2.65     |          |

#### Note:

1. When the 10-g SAR is  $\leq$  1.0W/kg, testing for low and high channel is optional.

2. The result was tested under the lowest data rate 1Mbps for 802.11b.

### SAR Values for E-UTRA Band3 -Body

| Frequer | icy     | Mode/Band  | Test Spacing( |             | SAR(10g) | Power    | Ref.Plot |
|---------|---------|------------|---------------|-------------|----------|----------|----------|
| MHz     | Channel | Mode/Ballu | Position      | Spacing(mm) | (W/kg)   | Drift(%) | #        |
| 1747.5  | 19575   | RMC        | Front         | 0           | 0.366    | 0.66     | 4        |
| 1747.5  | 19575   | RMC        | Rear          | 0           | 0.282    | -3.50    |          |

#### Note:

1. When the 10-g SAR is  $\leq$  1.0W/kg, testing for low and high channel is optional.

2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode.

### SAR Values for E-UTRA Band 28 -Body

| Freque | ency    | Mode/Band | Test     | Spacing(mm) | SAR(10g) | Power    | Ref.Plot |
|--------|---------|-----------|----------|-------------|----------|----------|----------|
| MHz    | Channel | WOUE/Danu | Position | Spacing(mm) | (W/kg)   | Drift(%) | #        |
| 725.50 | 27210   | RMC       | Front    | 0           | 0.222    | -3.00    |          |
| 725.50 | 27210   | RMC       | Rear     | 0           | 0.611    | -1.65    | 5        |

#### Note:

1. When the 10-g SAR is  $\leq$  1.0W/Kg, testing for low and high channel is optional.

2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 114

# 4.4. Measurement Uncertainty (450MHz-6GHz)

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Uncertainty Component                              | Tol<br>(+- %)              | Prob.<br>Dist. | Div.                                      | Ci (1g)        | Ci (10g)       | 1g Ui<br>(+-%) | 10g Ui<br>(+-%) | Veff     |
|----------------------------------------------------|----------------------------|----------------|-------------------------------------------|----------------|----------------|----------------|-----------------|----------|
| Measurement System                                 |                            |                |                                           |                |                |                |                 |          |
| Probe calibration                                  | 5.8                        | Ν              | 1                                         | 1              | 1              | 5.80           | 5.80            | $\infty$ |
| Axial Isotropy                                     | 3.5                        | R              | √3                                        | $\sqrt{1-C_p}$ | $\sqrt{1-C_p}$ | 1.43           | 1.43            | 8        |
| Hemispherical Isotropy                             | 5.9                        | R              | √3                                        | $\sqrt{C_p}$   | $\sqrt{C_p}$   | 2.41           | 2.41            | 8        |
| Boundary effect                                    | 1.0                        | R              | √3                                        | 1              | 1              | 0.58           | 0.58            | 8        |
| Linearity                                          | 4.7                        | R              | √3                                        | 1              | 1              | 2.71           | 2.71            | 8        |
| System detection limits                            | 1.0                        | R              | √3                                        | 1              | 1              | 0.58           | 0.58            | 8        |
| Readout Electronics                                | 0.5                        | Ν              | 1                                         | 1              | 1              | 0.50           | 0.50            | 8        |
| Response Time                                      | 0.0                        | R              | √3                                        | 1              | 1              | 0.00           | 0.00            | 8        |
| Integration Time                                   | 1.4                        | R              | √3                                        | 1              | 1              | 0.81           | 0.81            | 8        |
| RF ambient Conditions - Noise                      | 3.0                        | R              | √3                                        | 1              | 1              | 1.73           | 1.73            | 8        |
| RF ambient Conditions -<br>Reflections             | 3.0                        | R              | √3                                        | 1              | 1              | 1.73           | 1.73            | 8        |
| Probe positioner Mechanical<br>Tolerance           | 1.4                        | R              | √3                                        | 1              | 1              | 0.81           | 0.81            | 8        |
| Probe positioning with respect to<br>Phantom Shell | 1.4                        | R              | √3                                        | 1              | 1              | 0.81           | 0.81            | 8        |
| Max. SAR Evaluation                                | 1.0                        | R              | √3                                        | 1              | 1              | 0.6            | 0.6             | 8        |
| Test sample Related                                |                            |                |                                           |                |                |                | ·               |          |
| Device positioning                                 | 2.6                        | Ν              | 1                                         | 1              | 1              | 2.6            | 2.6             | 11       |
| Device holder                                      | 3.0                        | Ν              | 1                                         | 1              | 1              | 3.0            | 3.0             | 7        |
| Drift of output power                              | 5.0                        | Ν              | √3                                        | 1              | 1              | 2.89           | 2.89            | 8        |
| Phantom and Tissue Parameters                      |                            |                |                                           |                |                |                |                 |          |
| Phantom uncertainty                                | 4.00                       | R              | √3                                        | 1              | 1              | 2.31           | 2.31            | $\infty$ |
| Liquid conductivity (target)                       | 2.50                       | N              | 1                                         | 0.78           | 0.71           | 1.95           | 1.78            | 5        |
| Liquid conductivity (meas)                         | 4.00                       | Ν              | 1                                         | 0.23           | 0.26           | 0.92           | 1.04            | 5        |
| Liquid Permittivity (target)                       | 2.50                       | N              | 1                                         | 0.78           | 0.71           | 1.95           | 1.78            | 8        |
| Liquid Permittivity (meas)                         | 5.00                       | Ν              | 1                                         | 0.23           | 0.26           | 1.15           | 1.30            | 8        |
| Combined Standard                                  |                            | RSS            | $U_c = \sqrt{\sum_{i=1}^{n} C_i^2 U_i^2}$ |                |                | 10.63<br>%     | 10.54%          |          |
| Expanded Uncertainty<br>(95% Confidence interval)  | U = k U <sub>c</sub> , k=2 |                |                                           |                |                | 21.26<br>%     | 21.08%          |          |

### 4.5. System Check Results

Test mode:750MHz Product Description:Validation Model:Dipole SID750 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: April 16, 2019

| Medium(liquid type)Frequency (MHz)Relative permittivity (real part)Conductivity (S/m)Input powerCrest FactorConversion FactorVariation (%)SAR 10g (W/Kg)SAR 1g (W/Kg)SURFACE SAR | HSL_750<br>750.0000<br>41.90<br>0.88<br>100mW<br>1.0<br>1.45<br>-0.170000<br>0.552559<br>0.871285<br>VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SURFACE SAR                                                                                                                                                                      | Support       Support         Support       Support |  |  |
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 114

Report No.: LCS190415004AEB

Test mode:900MHz Product Description:Validation Model:Dipole SID900 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: April 18, 2019

| Medium(liquid type)                                                                  | HSL_900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Frequency (MHz)                                                                      | 900.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Relative permittivity (real part)                                                    | 41.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Conductivity (S/m)                                                                   | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Input power                                                                          | 100mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Crest Factor                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Conversion Factor                                                                    | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Variation (%)                                                                        | 1.570000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SAR 10g (W/Kg)                                                                       | 0.678402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SAR 1g (W/Kg)                                                                        | 1.055213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| SURFACE SAR                                                                          | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Calter Scale<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()             | Clars Scale         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |  |  |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| This report shall not be reproduced except in full, without the written<br>Page 38 c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

Report No.: LCS190415004AEB

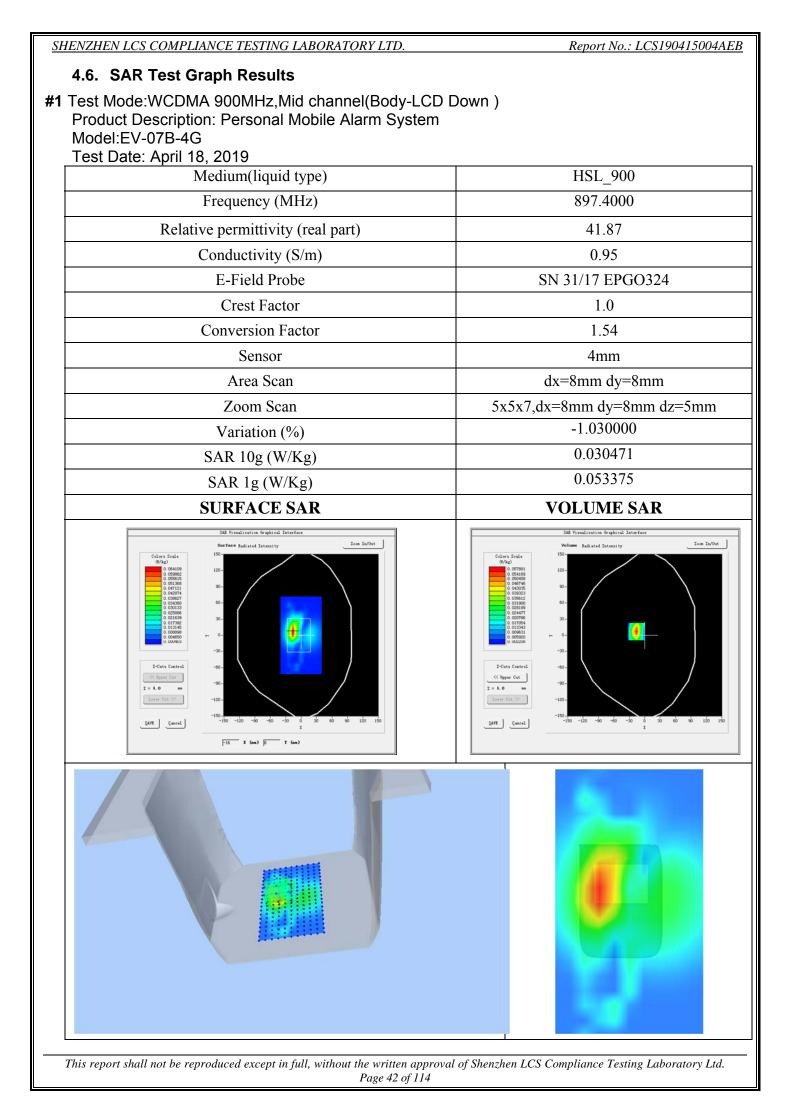
Test mode:1800MHz Product Description:Validation Model:Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: April 19, 2019

| Medium(liquid type)<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HSL_1800<br>1800.0000 |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39.55                 |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.41                  |
| Input power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.41<br>100mW         |
| Crest Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0                   |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.65                  |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.040000              |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.887620              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.017692              |
| SAR 1g (W/Kg) SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOLUME SAR            |
| Image: constrained a starting       Image: constrained a starting         Image: constarting       Image: constrained |                       |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd Page 39 of 114

Report No.: LCS190415004AEB

Test mode:2000MHz Product Description:Validation Model:Dipole SID2000 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: May 11, 2019


| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HSL_2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Input power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Crest Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.750000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.019630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.264319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VOLUME SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} \text{Further Latistic Latensity} \\ \hline \\ \text{Colors Scale} \\ \hline \\ \text{Orbel} \\ \hline \\ \text{Orbel} \\ \text{Orbel}$ | $ \begin{array}{c} \textbf{Value}  \textbf{Eads ated latenaity} \\ \hline \textbf{Calors Scale} \\ \hline \textbf{O} \\ \textbf{Calors Scale} \\ \hline \textbf{O} \\ \textbf{Calors Scale} \\ $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| This report shall not be reproduced except in full, without the written<br>Page 40 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a approval of Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Page 40 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Report No.: LCS190415004AEB

Test mode:2450MHz Product Description:Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: May 17, 2019

| Medium(liquid type)                  | HSL_2450                                                                                           |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Frequency (MHz)                      | 2450.0000                                                                                          |  |  |
| Relative permittivity (real part)    | 39.64                                                                                              |  |  |
| Conductivity (S/m)                   | 1.79                                                                                               |  |  |
| Input power                          | 100mW                                                                                              |  |  |
| Crest Factor                         | 1.0                                                                                                |  |  |
| Conversion Factor                    | 1.91                                                                                               |  |  |
| Variation (%)                        | 2.740000                                                                                           |  |  |
| SAR 10g (W/Kg)                       | 2.347910                                                                                           |  |  |
| SAR 1g (W/Kg)                        | 4.976820                                                                                           |  |  |
| SURFACE SAR                          | VOLUME SAR                                                                                         |  |  |
| Ever c = Edited Latensity Low InVest | $ \begin{array}{c} \textbf{v} \textbf{v} \textbf{v} \textbf{v} \textbf{v} \textbf{v} \textbf{v} v$ |  |  |
|                                      |                                                                                                    |  |  |
|                                      |                                                                                                    |  |  |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 114



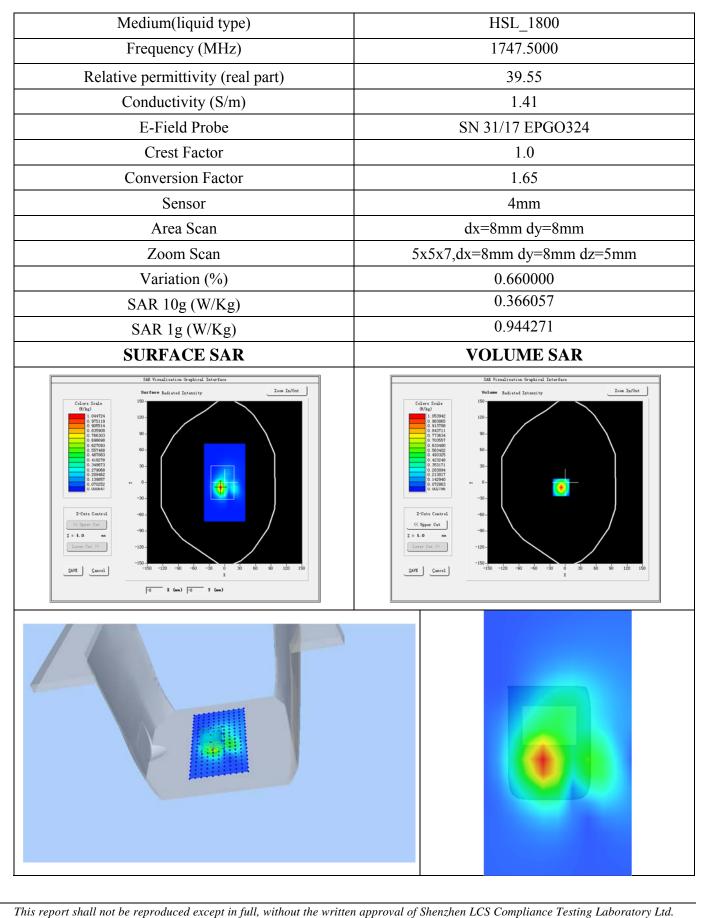
Report No.: LCS190415004AEB

**#2** Test Mode:WCDMA2100MHz,Mid channel(Body-LCD Up) Product Description: Personal Mobile Alarm System Model: EV-07B-4G Test Date: May 11, 2019

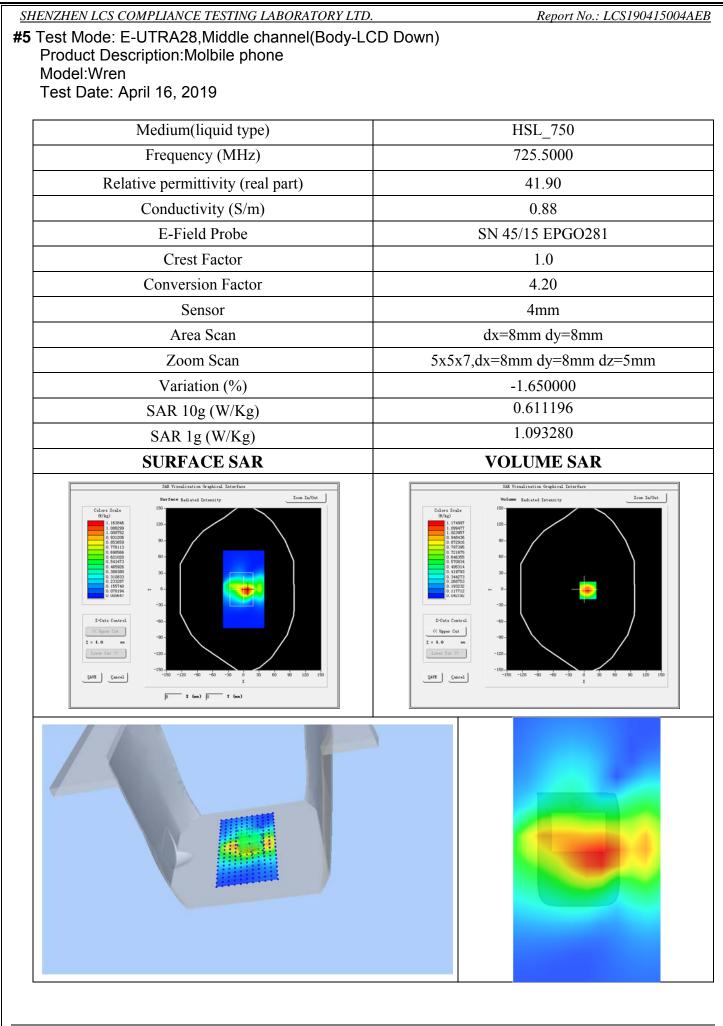
| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HSL_2000                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1950.0000                                              |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.26                                                  |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.43                                                   |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SN 31/17 EPGO324                                       |
| Crest Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                    |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.83                                                   |
| Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4mm                                                    |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dx=8mm dy=8mm                                          |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5x5x7,dx=8mm dy=8mm dz=5mm                             |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.830000                                              |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.063724                                               |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.153338                                               |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VOLUME SAR                                             |
| Colars Sola<br>0 1963<br>0 1963<br>0 1964<br>0 00000<br>0 000000<br>0 00000<br>0 000000<br>0 00000<br>0 000000<br>0 0000000<br>0 00000000 | Calars Seals<br>0 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 114

Report No.: LCS190415004AEB


#### **#3** Test Mode:802.11b, Mid channel(Body-LCD Up) Product Description:Personal Mobile Alarm System Model:EV-07B-4G Test Date: May 17, 2019

| Medium(liquid type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HSL_2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2442.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Relative permittivity (real part)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conductivity (S/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E-Field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SN 31/17 EPGO324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Crest Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conversion Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Area Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dx=8mm dy=8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Zoom Scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5x5x7,dx=8mm dy=8mm dz=5mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Variation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.370000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAR 10g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.312714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAR 1g (W/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.763848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SURFACE SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>VOLUME SAR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C-Cuts Central       100         C -Cuts Central       0         C -Do       0         C -Do | Calars Sett<br>0 0 strong<br>0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 114

Report No.: LCS190415004AEB

#### #4 Test Mode: E-UTRA3,Mid channel(Body-LCD Up) Product Description: Personal Mobile Alarm System Model: EV-07B-4G Test Date: April 19, 2019



Page 45 of 114



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 114

# **5.ALIBRATION CETIFICATE**

#### SARTIMO Calibration Certificate-Extended Dipole Calibrations

According to KDB 450824 D02, Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for extended 3-year calibration interval.

- 1) When the most recent return-loss, measured at least annually, deviates by more than 20% from theprevious measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification
- 2) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than  $5\Omega$  from the previous measurement

#### Summary Result:

| SID750   |                 |                 |             |
|----------|-----------------|-----------------|-------------|
| Frquency | Return Loss(dB) | Requirement(dB) | Impedence   |
| 750      | -34.48          | -20             | 51.2Ω+1.4jΩ |

#### SID900

| 512500   |                 |                 |             |
|----------|-----------------|-----------------|-------------|
| Frquency | Return Loss(dB) | Requirement(dB) | Impedence   |
| 900      | -23.55          | -20             | 52.8Ω-5.4jΩ |

# SID1800 Frquency Return Loss(dB) Requirement(dB) Impedence 1800 -20.26 -20 43.1Ω+6.9jΩ

| SID 2000 |                 |                 |             |
|----------|-----------------|-----------------|-------------|
| Frquency | Return Loss(dB) | Requirement(dB) | Impedence   |
| 2000     | -23.67          | -20             | 50.8Ω-6.2jΩ |

| SID 2450 |                 |                 |             |
|----------|-----------------|-----------------|-------------|
| Frquency | Return Loss(dB) | Requirement(dB) | Impedence   |
| 2450     | -25.59          | -20             | 44.7Ω-1.1jΩ |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 114

#### 5.1 Probe-EPGO324 Calibration Certificate



# **COMOSAR E-Field Probe Calibration Report**

Ref : ACR.281.2.18.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 31/17 EPGO324

> Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144



Calibration Date: 10/08/2018

#### Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 114



#### COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

| Name          | Function                 | Date                                                                | Signature                                                                                       |
|---------------|--------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Jérôme LUC    | Product Manager          | 10/8/2018                                                           | Jes                                                                                             |
| Jérôme LUC    | Product Manager          | 10/8/2018                                                           | Jez                                                                                             |
| Kim RUTKOWSKI | Quality Manager          | 10/8/2018                                                           | them Putthowski                                                                                 |
|               | Jérôme LUC<br>Jérôme LUC | Jérôme LUC     Product Manager       Jérôme LUC     Product Manager | Jérôme LUC     Product Manager     10/8/2018       Jérôme LUC     Product Manager     10/8/2018 |

|                | Customer Name                                         |
|----------------|-------------------------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing<br>Laboratory Ltd. |

| Date      | Modifications   |  |
|-----------|-----------------|--|
| 10/8/2018 | Initial release |  |
|           |                 |  |
|           |                 |  |
|           |                 |  |
|           |                 |  |

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 114

Report No.: LCS190415004AEB



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

#### TABLE OF CONTENTS

| 1 | Dev  | vice Under Test              |   |
|---|------|------------------------------|---|
| 2 | Pro  | duct Description             |   |
|   | 2.1  | General Information          | 4 |
| 3 | Me   | asurement Method             |   |
|   | 3.1  | Linearity                    | 4 |
|   | 3.2  | Sensitivity                  | 5 |
|   | 3.3  | Lower Detection Limit        | 5 |
|   | 3.4  | Isotropy                     | 5 |
|   | 3.5  | Boundary Effect              | 5 |
| 4 | Me   | asurement Uncertainty        |   |
| 5 | Cal  | ibration Measurement Results |   |
|   | 5.1  | Sensitivity in air           | 6 |
|   | 5.2  | Linearity                    | 7 |
|   | 5.3  | Sensitivity in liquid        | 7 |
|   | 5.4  | Isotropy                     | 8 |
| 6 | List | of Equipment10               |   |

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 114



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

#### 1 DEVICE UNDER TEST

| Device Under Test                        |                                  |  |  |
|------------------------------------------|----------------------------------|--|--|
| Device Type                              | COMOSAR DOSIMETRIC E FIELD PROBE |  |  |
| Manufacturer                             | MVG                              |  |  |
| Model                                    | SSE2                             |  |  |
| Serial Number                            | SN 31/17 EPGO324                 |  |  |
| Product Condition (new / used)           | New                              |  |  |
| Frequency Range of Probe                 | 0.15 GHz-6GHz                    |  |  |
| Resistance of Three Dipoles at Connector | Dipole 1: R1=0.189 MΩ            |  |  |
|                                          | Dipole 2: R2=0.203 MΩ            |  |  |
|                                          | Dipole 3: R3=0.218 MΩ            |  |  |

A yearly calibration interval is recommended.

#### 2 PRODUCT DESCRIPTION

#### 2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.



Figure 1 – MVG COMOSAR Dosimetric E field Dipole

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 2 mm   |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 2.5 mm |
| Distance between dipoles / probe extremity | 1 mm   |

#### 3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

#### 3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

#### Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 114



COMOSAR E-FIELD PROBE CALIBRATION REPORT

#### 3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

#### 3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

#### 3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

#### 3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

#### 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| Uncertainty analysis of the probe calibration in waveguide |                          |                             |            |    |                             |
|------------------------------------------------------------|--------------------------|-----------------------------|------------|----|-----------------------------|
| ERROR SOURCES                                              | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor    | ci | Standard<br>Uncertainty (%) |
| Incident or forward power                                  | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |
| Reflected power                                            | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |
| Liquid conductivity                                        | 5.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.887%                      |
| Liquid permittivity                                        | 4.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.309%                      |
| Field homogeneity                                          | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |
| Field probe positioning                                    | 5.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.887%                      |

#### Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 114

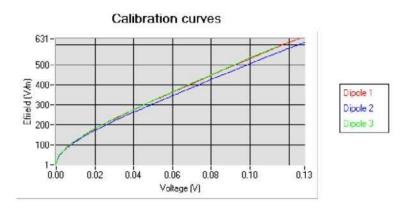


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

| Field probe linearity                               | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% |
|-----------------------------------------------------|-------|-------------|------------|---|--------|
| Combined standard uncertainty                       |       |             |            |   | 5.831% |
| Expanded uncertainty<br>95 % confidence level k = 2 |       |             |            |   | 12.0%  |

#### 5 CALIBRATION MEASUREMENT RESULTS


| Calibration Parameters |       |  |  |  |
|------------------------|-------|--|--|--|
| Liquid Temperature     | 21 °C |  |  |  |
| Lab Temperature        | 21 °C |  |  |  |
| Lab Humidity           | 45 %  |  |  |  |

#### 5.1 SENSITIVITY IN AIR

|      | Normy dipole $2 (\mu V/(V/m)^2)$ |      |
|------|----------------------------------|------|
| 0.80 | 0.83                             | 0.68 |

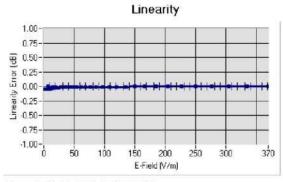
| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 95           | 90           | 93           |

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:  $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$ 



#### Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 114



#### COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

#### 5.2 LINEARITY



Linearity: 1+/-1.13% (+/-0.05dB)

#### 5.3 SENSITIVITY IN LIQUID

| Liquid | Frequency<br>(MHz +/-<br>100MHz) | Permittivity | Epsilon (S/m) | <u>ConvF</u> |
|--------|----------------------------------|--------------|---------------|--------------|
| HL450  | 450                              | 42.17        | 0.86          | 1.56         |
| BL450  | 450                              | 57.65        | 0.95          | 1.60         |
| HL750  | 750                              | 40.03        | 0.93          | 1.45         |
| BL750  | 750                              | 56.83        | 1.00          | 1.50         |
| HL850  | 835                              | 42.19        | 0.90          | 1.55         |
| BL850  | 835                              | 54.67        | 1.01          | 1.59         |
| HL900  | 900                              | 42.08        | 1.01          | 1.54         |
| BL900  | 900                              | 55.25        | 1.08          | 1.60         |
| HL1800 | 1800                             | 41.68        | 1.46          | 1.65         |
| BL1800 | 1800                             | 53.86        | 1.46          | 1.68         |
| HL1900 | 1900                             | 38.45        | 1.45          | 1.86         |
| BL1900 | 1900                             | 53.32        | 1.56          | 1.93         |
| HL2000 | 2000                             | 38.26        | 1.38          | 1.83         |
| BL2000 | 2000                             | 52.70        | 1.51          | 1.89         |
| HL2300 | 2300                             | 39.44        | 1.62          | 1.95         |
| BL2300 | 2300                             | 54.52        | 1.77          | 2.01         |
| HL2450 | 2450                             | 37.50        | 1.80          | 1.91         |
| BL2450 | 2450                             | 53.22        | 1.89          | 1.95         |
| HL2600 | 2600                             | 39.80        | 1.99          | 1.89         |
| BL2600 | 2600                             | 52.52        | 2.23          | 1.94         |
| HL5200 | 5200                             | 35.64        | 4.67          | 1.50         |
| BL5200 | 5200                             | 48.64        | 5.51          | 1.56         |
| HL5400 | 5400                             | 36.44        | 4.87          | 1.44         |
| BL5400 | 5400                             | 46.52        | 5.77          | 1.47         |
| HL5600 | 5600                             | 36.66        | 5.17          | 1.48         |
| BL5600 | 5600                             | 46.79        | 5.77          | 1.53         |
| HL5800 | 5800                             | 35.31        | 5.31          | 1.50         |
| BL5800 | 5800                             | 47.04        | 6.10          | 1.55         |

#### LOWER DETECTION LIMIT: 9mW/kg

#### Page: 7/10

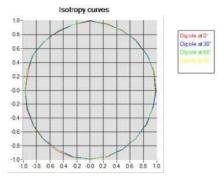
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 114

Report No.: LCS190415004AEB



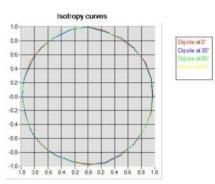
#### COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR.281.2.18.SATU.A

#### **ISOTROPY** 5.4

#### HL900 MHz

| - | Axial | isotropy: |
|---|-------|-----------|
|---|-------|-----------|


| - Axial isotropy:         | 0.05 dB             |
|---------------------------|---------------------|
| - Hemispherical isotropy: | $0.07  \mathrm{dB}$ |



#### HL1800 MHz

| - | Axial | isotropy | 1: |
|---|-------|----------|----|

|   | **  | 1    |         | Section and the section of the secti |     |
|---|-----|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| - | Hem | usph | ierical | isotrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | by: |



0.06 dB  $0.07 \, dB$ 

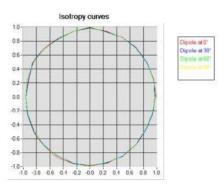
#### Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 114



#### COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR.281.2.18.SATU.A

#### HL5600 MHz

- Axial isotropy:

- Hemispherical isotropy:

0.06 dB 0.10 dB



Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 114



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

#### 6 LIST OF EQUIPMENT

|                                  | Equi                    | pment Summary S    | Sheet                                         |                                               |
|----------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment<br>Description         | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |
| Flat Phantom                     | MVG                     | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |
| COMOSAR Test Bench               | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |
| Network Analyzer                 | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2016                                       | 02/2019                                       |
| Reference Probe                  | MVG                     | EP 94 SN 37/08     | 10/2017                                       | 10/2019                                       |
| Multimeter                       | Keithley 2000           | 1188656            | 01/2017                                       | 01/2020                                       |
| Signal Generator                 | Agilent E4438C          | MY49070581         | 01/2017                                       | 01/2020                                       |
| Amplifier                        | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                      | HP E4418A               | US38261498         | 01/2017                                       | 01/2020                                       |
| Power Sensor                     | HP ECP-E26A             | US37181460         | 01/2017                                       | 01/2020                                       |
| Directional Coupler              | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. |                                               |
| Waveguide                        | Mega Industries         | 069Y7-158-13-712   | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| Waveguide Transition             | Mega Industries         | 069Y7-158-13-701   | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| Waveguide Termination            | Mega Industries         | 069Y7-158-13-701   | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| Temperature / Humidity<br>Sensor | Control Company         | 150798832          | 11/2017                                       | 11/2020                                       |

Page: 10/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 114

#### 5.2 SID750 Dipole Calibration Ceriticate



# **SAR Reference Dipole Calibration Report**

Ref: ACR.287.3.14.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 07/14 DIP 0G750-302

## Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



10/01/2018

#### Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

|               | Name          | Function        | Date       | Signature      |
|---------------|---------------|-----------------|------------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/14/2018 | Jes            |
| Checked by :  | Jérôme LUC    | Product Manager | 10/14/2018 | Jes            |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/14/2018 | thim nuthowski |

|                | Customer Name                                         |
|----------------|-------------------------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing<br>Laboratory Ltd. |

| Issue | Date       | Modifications   |
|-------|------------|-----------------|
| A     | 10/14/2018 | Initial release |
|       |            |                 |
|       |            |                 |
| -     |            |                 |
|       |            |                 |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

#### TABLE OF CONTENTS

| 1 | Intro | duction                                 |   |
|---|-------|-----------------------------------------|---|
| 2 | Dev   | ce Under Test4                          |   |
| 3 | Proc  | luct Description                        |   |
|   | 3.1   | General Information                     | 4 |
| 4 | Mea   | surement Method                         |   |
| ļ | 4.1   | Return Loss Requirements                | 5 |
|   | 4.2   | Mechanical Requirements                 |   |
| 5 | Mea   | surement Uncertainty                    |   |
|   | 5.1   | Return Loss                             | 5 |
|   | 5.2   | Dimension Measurement                   | 5 |
|   | 5.3   | Validation Measurement                  | 5 |
| 6 | Cali  | bration Measurement Results6            |   |
|   | 6.1   | Return Loss and Impedance               | 6 |
|   | 6.2   | Mechanical Dimensions                   | 6 |
| 7 | Vali  | dation measurement7                     |   |
|   | 7.1   | Head Liquid Measurement                 | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid | 7 |
|   | 7.3   | Body Liquid Measurement                 | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid | 9 |
| 8 | List  | of Equipment11                          |   |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| De                             | vice Under Test                  |
|--------------------------------|----------------------------------|
| Device Type                    | COMOSAR 750 MHz REFERENCE DIPOLE |
| Manufacturer                   | Satimo                           |
| Model                          | SID750                           |
| Serial Number                  | SN 07/14 DIP 0G750-302           |
| Product Condition (new / used) | New                              |

A yearly calibration interval is recommended.

#### **3 PRODUCT DESCRIPTION**

#### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole

#### Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 114



SAR REFERENCE DIPOLE CALIBRATION REPORT

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 3 - 300     | 0.05 mm                        |

#### 5.3 VALIDATION MEASUREMENT

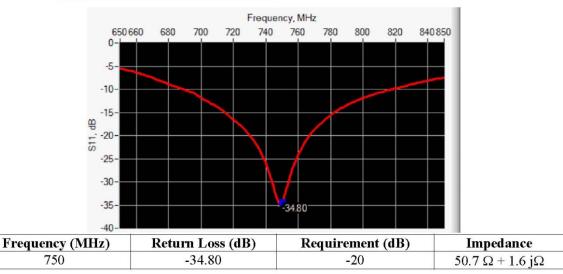
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| <b>Expanded Uncertainty</b> |
|-----------------------------|
| 20.3 %                      |
| 20.1 %                      |
|                             |

| Page: | 5/11 |
|-------|------|
|-------|------|

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 114




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

#### 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE



#### 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | าท       | h m         | ım       | d r        | nm       |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. | PASS     | 100.0 ±1 %. | PASS     | 6.35 ±1 %. | PASS     |
| 835           | 161.0 ±1 %. |          | 89.8±1%.    |          | 3.6 ±1 %.  |          |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1500          | 80.5 ±1 %.  |          | 50.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1640          | 79.0 ±1 %.  |          | 45.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1800          | 72.0 ±1 %.  |          | 41.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2450          | 51.5 ±1 %.  |          | 30.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2600          | 48.5 ±1 %.  |          | 28.8±1%.    |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |

#### Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 114



SAR REFERENCE DIPOLE CALIBRATION REPORT

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

## 7.1 <u>HEAD LIQUID MEASUREMENT</u>

| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv | ity (σ) S/m |
|------------------|--------------|-----------------|-----------|-------------|
|                  | required     | measured        | required  | measured    |
| 300              | 45.3 ±5 %    |                 | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                 | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    | PASS            | 0.89 ±5 % | PASS        |
| 835              | 41.5 ±5 %    |                 | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %    |                 | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %    |                 | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                 | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                 | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                 | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2100             | 39.8 ±5 %    |                 | 1.49 ±5 % |             |
| 2300             | 39.5 ±5 %    |                 | 1.67 ±5 % |             |
| 2450             | 39.2 ±5 %    |                 | 1.80 ±5 % |             |
| 2600             | 39.0 ±5 %    |                 | 1.96 ±5 % |             |
| 3000             | 38.5 ±5 %    |                 | 2.40 ±5 % |             |
| 3500             | 37.9 ±5 %    |                 | 2.91 ±5 % |             |

#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

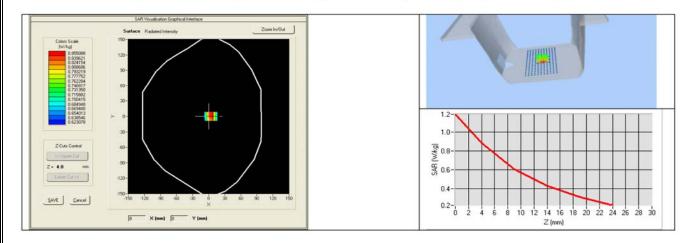
| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Head Liquid Values: eps' : 42.1 sigma : 0.89 |
| Distance between dipole center and liquid | 15.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |

#### Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 114

Report No.: LCS190415004AEB




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

| Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm |
|----------------------|---------------------|
| Frequency            | 750 MHz             |
| Input power          | 20 dBm              |
| Liquid Temperature   | 21 °C               |
| Lab Temperature      | 21 °C               |
| Lab Humidity         | 45 %                |

| Frequency<br>MHz | 1 g SAR ( | W/kg/W)     | 10 g SAR (W/kg/W) |             |
|------------------|-----------|-------------|-------------------|-------------|
|                  | required  | measured    | required          | measured    |
| 300              | 2.85      |             | 1.94              |             |
| 450              | 4.58      |             | 3.06              |             |
| 750              | 8.49      | 8.38 (0.84) | 5.55              | 5.53 (0.55) |
| 835              | 9.56      |             | 6.22              |             |
| 900              | 10.9      |             | 6.99              |             |
| 1450             | 29        |             | 16                |             |
| 1500             | 30.5      |             | 16.8              |             |
| 1640             | 34.2      |             | 18.4              |             |
| 1750             | 36.4      |             | 19.3              |             |
| 1800             | 38.4      |             | 20.1              |             |
| 1900             | 39.7      |             | 20.5              |             |
| 1950             | 40.5      |             | 20.9              |             |
| 2000             | 41.1      |             | 21.1              |             |
| 2100             | 43.6      |             | 21.9              |             |
| 2300             | 48.7      |             | 23.3              |             |
| 2450             | 52.4      |             | 24                |             |
| 2600             | 55.3      |             | 24.6              |             |
| 3000             | 63.8      |             | 25.7              |             |
| 3500             | 67.1      |             | 25                |             |



#### Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

#### 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | mittivity (ɛ,') | <b>Conductivity</b> (σ) S/m |          |
|------------------|--------------|-----------------|-----------------------------|----------|
|                  | required     | measured        | required                    | measured |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %                   | 9        |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %                   |          |
| 450              | 56.7 ±5 %    |                 | 0.94 ±5 %                   |          |
| 750              | 55.5 ±5 %    | PASS            | 0.96 ±5 %                   | PASS     |
| 835              | 55.2 ±5 %    |                 | 0.97 ±5 %                   |          |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %                   |          |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %                   |          |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %                   |          |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %                   |          |
| 1800             | 53.3 ±5 %    |                 | 1.52 ±5 %                   |          |
| 1900             | 53.3 ±5 %    |                 | 1.52 ±5 %                   |          |
| 2000             | 53.3 ±5 %    |                 | 1.52 ±5 %                   |          |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %                   |          |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %                   |          |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %                   |          |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %                   |          |
| 3500             | 51.3 ±5 %    |                 | 3.31 ±5 %                   |          |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 %                  |          |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 %                  |          |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 %                  |          |
| 5500             | 48.6 ±10 %   |                 | 5.65 ±10 %                  |          |
| 5600             | 48.5 ±10 %   |                 | 5.77 ±10 %                  |          |
| 5800             | 48.2 ±10 %   |                 | 6.00 ±10 %                  |          |

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Body Liquid Values: eps' : 56.6 sigma : 0.99 |
| Distance between dipole center and liquid | 15.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                          |
| Frequency                                 | 750 MHz                                      |
| Input power                               | 20 dBm                                       |
| Liquid Temperature                        | 21 °C                                        |
| Lab Temperature                           | 21 °C                                        |
| Lab Humidity                              | 45 %                                         |

#### Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 114



#### 5.3 SID900 Dipole Calibration Ceriticate



# **SAR Reference Dipole Calibration Report**

Ref: ACR.287.5.14.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA

SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 900 MHZ

SERIAL NO.: SN 07/14 DIP 0G900-300

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



10/01/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.5.14.SATU.A

|               | Name          | Function        | Date       | Signature      |
|---------------|---------------|-----------------|------------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/14/2018 | Jez            |
| Checked by :  | Jérôme LUC    | Product Manager | 10/14/2018 | JS             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/14/2018 | them Muthowski |

|                | Customer Name      |
|----------------|--------------------|
|                | Shenzhen LCS       |
| Distribution : | Compliance Testing |
|                | Laboratory Ltd.    |

| Issue | Date       | Modifications   |  |
|-------|------------|-----------------|--|
| A     | 10/14/2018 | Initial release |  |
|       |            |                 |  |
|       |            |                 |  |
|       |            |                 |  |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.5.14.SATU.A

#### TABLE OF CONTENTS

| 1 | Intro | oduction                                |   |
|---|-------|-----------------------------------------|---|
| 2 | Dev   | ice Under Test                          |   |
| 3 | Proc  | luct Description                        |   |
|   | 3.1   | General Information                     | 4 |
| 4 | Mea   | surement Method                         |   |
|   | 4.1   | Return Loss Requirements                | 5 |
|   | 4.2   | Mechanical Requirements                 |   |
| 5 | Mea   | surement Uncertainty                    |   |
|   | 5.1   | Return Loss                             | 5 |
|   | 5.2   | Dimension Measurement                   | 5 |
|   | 5.3   | Validation Measurement                  | 5 |
| 6 | Cali  | bration Measurement Results6            |   |
|   | 6.1   | Return Loss and Impedance               | 6 |
|   | 6.2   | Mechanical Dimensions                   | 6 |
| 7 | Vali  | dation measurement                      |   |
|   | 7.1   | Head Liquid Measurement                 | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid | 7 |
|   | 7.3   | Body Liquid Measurement                 | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid | 9 |
| 8 | List  | of Equipment                            |   |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.5.14.SATU.A

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                  |  |  |  |
|--------------------------------|----------------------------------|--|--|--|
| Device Type                    | COMOSAR 900 MHz REFERENCE DIPOLE |  |  |  |
| Manufacturer                   | Satimo                           |  |  |  |
| Model                          | SID900                           |  |  |  |
| Serial Number                  | SN 07/14 DIP 0G900-300           |  |  |  |
| Product Condition (new / used) | New                              |  |  |  |

A yearly calibration interval is recommended.

#### **3** PRODUCT DESCRIPTION

#### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole

#### Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 70 of 114



SAR REFERENCE DIPOLE CALIBRATION REPORT

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |  |  |
|----------------|-------------------------------------|--|--|
| 400-6000MHz    | 0.1 dB                              |  |  |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |  |  |
|-------------|--------------------------------|--|--|
| 3 - 300     | 0.05 mm                        |  |  |

#### 5.3 VALIDATION MEASUREMENT

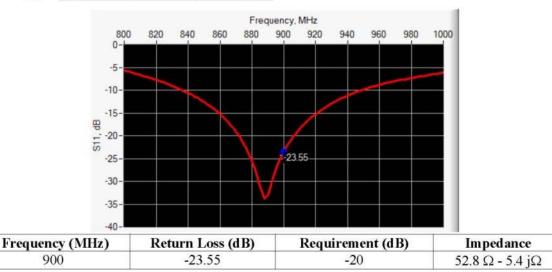
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |  |  |
|-------------|----------------------|--|--|
| 1 g         | 20.3 %               |  |  |
| 10 g        | 20.1 %               |  |  |

| Page: | 5/11 |
|-------|------|
|       |      |

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 114




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.5.14.SATU.A

#### 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE



#### 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | Lmm         |          | h mm        |          | d mm       |          |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. |          | 89.8±1 %.   |          | 3.6 ±1 %.  |          |
| 900           | 149.0 ±1 %. | PASS     | 83.3 ±1 %.  | PASS     | 3.6 ±1 %.  | PASS     |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1500          | 80.5 ±1 %.  |          | 50.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1640          | 79.0 ±1 %.  |          | 45.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1800          | 72.0 ±1 %.  | []       | 41.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2450          | 51.5 ±1 %.  |          | 30.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2600          | 48.5 ±1 %.  |          | 28.8 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |

#### Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 72 of 114



Ref: ACR.287.5.14.SATU.A

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

#### 7.1 HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv | ity (σ) S/m |
|------------------|--------------|-----------------|-----------|-------------|
|                  | required     | measured        | required  | measured    |
| 300              | 45.3 ±5 %    |                 | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                 | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    |                 | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %    |                 | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %    | PASS            | 0.97 ±5 % | PASS        |
| 1450             | 40.5 ±5 %    |                 | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                 | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                 | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                 | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2100             | 39.8 ±5 %    |                 | 1.49 ±5 % |             |
| 2300             | 39.5 ±5 %    | -               | 1.67 ±5 % |             |
| 2450             | 39.2 ±5 %    |                 | 1.80 ±5 % |             |
| 2600             | 39.0 ±5 %    |                 | 1.96 ±5 % |             |
| 3000             | 38.5 ±5 %    |                 | 2.40 ±5 % |             |
| 3500             | 37.9 ±5 %    |                 | 2.91 ±5 % |             |

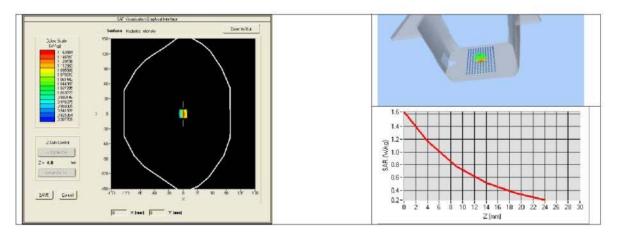
# 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Head Liquid Values: eps' : 42.5 sigma : 0.96 |
| Distance between dipole center and liquid | 15.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |

#### Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 114



Ref: ACR.287.5.14.SATU.A

| Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm |  |
|----------------------|---------------------|--|
| Frequency            | 900 MHz             |  |
| Input power          | 20 dBm              |  |
| Liquid Temperature   | 21 °C               |  |
| Lab Temperature      | 21 °C               |  |
| Lab Humidity         | 45 %                |  |

| Frequency<br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)   |
|------------------|----------|--------------|----------|------------|
|                  | required | measured     | required | measured   |
| 300              | 2.85     |              | 1.94     |            |
| 450              | 4.58     |              | 3.06     |            |
| 750              | 8.49     |              | 5.55     |            |
| 835              | 9.56     |              | 6.22     |            |
| 900              | 10.9     | 11.12 (1.11) | 6.99     | 7.01 (0.70 |
| 1450             | 29       |              | 16       |            |
| 1500             | 30.5     |              | 16.8     |            |
| 1640             | 34.2     |              | 18.4     |            |
| 1750             | 36.4     |              | 19.3     |            |
| 1800             | 38.4     |              | 20.1     |            |
| 1900             | 39.7     |              | 20.5     |            |
| 1950             | 40.5     |              | 20.9     |            |
| 2000             | 41.1     |              | 21.1     |            |
| 2100             | 43.6     |              | 21.9     |            |
| 2300             | 48.7     |              | 23.3     |            |
| 2450             | 52.4     |              | 24       |            |
| 2600             | 55.3     |              | 24.6     |            |
| 3000             | 63.8     |              | 25.7     |            |
| 3500             | 67.1     |              | 25       |            |



#### Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 74 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.5.14.SATU.A

# 7.3 BODY LIQUID MEASUREMENT

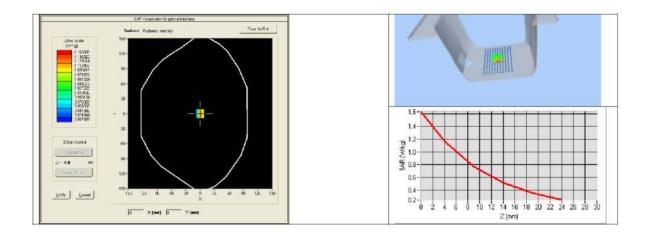
| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv  | ity (σ) S/m |
|------------------|--------------|-----------------|------------|-------------|
|                  | required     | measured        | required   | measured    |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %    |                 | 0.94 ±5 %  |             |
| 750              | 55.5 ±5 %    |                 | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %    |                 | 0.97 ±5 %  |             |
| 900              | 55.0 ±5 %    | PASS            | 1.05 ±5 %  | PASS        |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 1900             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 2000             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %  |             |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %    |                 | 3.31±5%    |             |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |             |
| 5500             | 48.6 ±10 %   |                 | 5.65 ±10 % |             |
| 5600             | 48.5 ±10 %   |                 | 5.77 ±10 % |             |
| 5800             | 48.2 ±10 %   |                 | 6.00 ±10 % |             |

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| OPENSAR V4                                   |
|----------------------------------------------|
| SN 20/09 SAM71                               |
| SN 18/11 EPG122                              |
| Body Liquid Values: eps' : 56.7 sigma : 1.08 |
| 15.0 mm                                      |
| dx=8mm/dy=8mm                                |
| dx=8mm/dy=8m/dz=5mm                          |
| 900 MHz                                      |
| 20 dBm                                       |
| 21 °C                                        |
| 21 °C                                        |
| 45 %                                         |
|                                              |

#### Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.5.14.SATU.A

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 900              | 11.34 (1.13)     | 7.15 (0.72)       |



Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 114



# 8 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                               |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2016                                       | 02/2019                                       |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2016                                       | 12/2019                                       |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2018                                       | 10/2019                                       |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2016                                       | 12/2019                                       |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2016                                       | 12/2019                                       |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. |                                               |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2016                                       | 12/2019                                       |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2016                                       | 12/2019                                       |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2016                                        | 8/2019                                        |  |

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 77 of 114



# 5.4 SID1800 Dipole Calibration Certificate



# **SAR Reference Dipole Calibration Report**

Ref: ACR.287.6.14.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

# 1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

# BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA

# SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ SERIAL NO.: SN 07/14 DIP 1G800-301

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



## Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 78 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

|               | Name          | Function        | Date       | Signature       |
|---------------|---------------|-----------------|------------|-----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/14/2018 | Jes             |
| Checked by :  | Jérôme LUC    | Product Manager | 10/14/2018 | JS              |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/14/2018 | them Putthowshi |

|                | Customer Name                      |
|----------------|------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing |
|                | Laboratory Ltd.                    |

| Issue | Date       | Modifications   |  |
|-------|------------|-----------------|--|
| A     | 10/14/2018 | Initial release |  |
|       |            |                 |  |
|       |            |                 |  |
|       |            |                 |  |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 79 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

# TABLE OF CONTENTS

| 1 | Intro | oduction                                |   |
|---|-------|-----------------------------------------|---|
| 2 | Dev   | ice Under Test                          |   |
| 3 | Proc  | luct Description                        |   |
|   | 3.1   | General Information                     | 4 |
| 4 | Mea   | surement Method                         |   |
|   | 4.1   | Return Loss Requirements                | 5 |
|   | 4.2   | Mechanical Requirements                 |   |
| 5 | Mea   | surement Uncertainty                    |   |
|   | 5.1   | Return Loss                             | 5 |
|   | 5.2   | Dimension Measurement                   | 5 |
|   | 5.3   | Validation Measurement                  | 5 |
| 6 | Cali  | bration Measurement Results             |   |
|   | 6.1   | Return Loss and Impedance               | 6 |
|   | 6.2   | Mechanical Dimensions                   | 6 |
| 7 | Vali  | dation measurement                      |   |
|   | 7.1   | Head Liquid Measurement                 | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid | 7 |
|   | 7.3   | Body Liquid Measurement                 | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid | 9 |
| 8 | List  | of Equipment                            |   |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 80 of 114



SAR REFERENCE DIPOLE CALIBRATION REPORT

# 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                   |  |  |
|--------------------------------|-----------------------------------|--|--|
| Device Type                    | COMOSAR 1800 MHz REFERENCE DIPOLE |  |  |
| Manufacturer                   | Satimo                            |  |  |
| Model                          | SID1800                           |  |  |
| Serial Number                  | SN 07/14 DIP 1G800-301            |  |  |
| Product Condition (new / used) | New                               |  |  |

A yearly calibration interval is recommended.

#### **3** PRODUCT DESCRIPTION

#### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole

#### Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 81 of 114



#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

# 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Lengt |  |
|-------------|-------------------------------|--|
| 3 - 300     | 0.05 mm                       |  |

## 5.3 VALIDATION MEASUREMENT

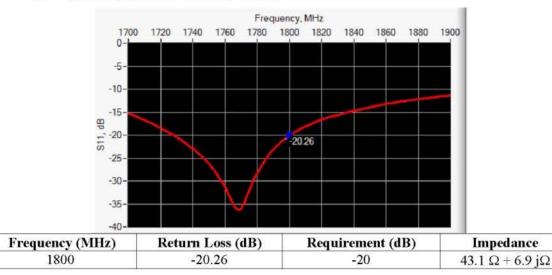
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |

| Page: | 5/11 |
|-------|------|
|-------|------|

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 82 of 114




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

# 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE



# 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | าm       | n <b>h</b> mm |          | d r        | nm       |
|---------------|-------------|----------|---------------|----------|------------|----------|
|               | required    | measured | required      | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %.   |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %.   |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %.   |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. |          | 89.8±1%.      |          | 3.6 ±1 %.  |          |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.    |          | 3.6 ±1 %.  |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.    |          | 3.6 ±1 %.  |          |
| 1500          | 80.5 ±1 %.  |          | 50.0 ±1 %.    |          | 3.6 ±1 %.  |          |
| 1640          | 79.0 ±1 %.  |          | 45.7 ±1 %.    |          | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.    |          | 3.6 ±1 %.  |          |
| 1800          | 72.0 ±1 %.  | PASS     | 41.7 ±1 %.    | PASS     | 3.6 ±1 %.  | PASS     |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.    |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.    |          | 3.6 ±1 %.  |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.    |          | 3.6 ±1 %.  |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.    |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6±1%.      |          | 3.6 ±1 %.  |          |
| 2450          | 51.5 ±1 %.  |          | 30.4 ±1 %.    |          | 3.6 ±1 %.  |          |
| 2600          | 48.5 ±1 %.  |          | 28.8±1%.      |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.    |          | 3.6 ±1 %.  |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.    |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   | 1        | 26.4 ±1 %.    |          | 3.6 ±1 %.  |          |

#### Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 83 of 114



Ref: ACR.287.6.14.SATU.A

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

#### 7.1 HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv | ity (σ) S/m |
|------------------|--------------|-----------------|-----------|-------------|
|                  | required     | measured        | required  | measured    |
| 300              | 45.3 ±5 %    |                 | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                 | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    |                 | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %    |                 | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %    |                 | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %    |                 | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                 | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                 | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                 | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    | PASS            | 1.40 ±5 % | PASS        |
| 1900             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2100             | 39.8 ±5 %    |                 | 1.49 ±5 % |             |
| 2300             | 39.5 ±5 %    |                 | 1.67 ±5 % |             |
| 2450             | 39.2 ±5 %    |                 | 1.80 ±5 % |             |
| 2600             | 39.0 ±5 %    |                 | 1.96 ±5 % |             |
| 3000             | 38.5 ±5 %    |                 | 2.40 ±5 % |             |
| 3500             | 37.9 ±5 %    |                 | 2.91 ±5 % |             |

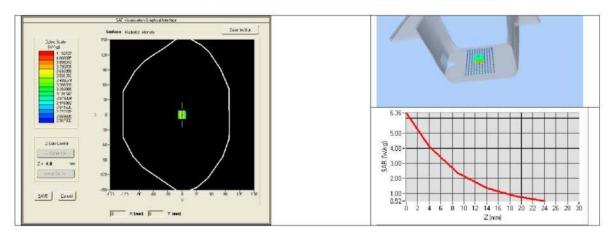
# 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Head Liquid Values: eps' : 41.3 sigma : 1.38 |
| Distance between dipole center and liquid | 10.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |

#### Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 84 of 114



Ref: ACR.287.6.14.SATU.A

| Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm |  |
|----------------------|---------------------|--|
| Frequency            | 1800 MHz            |  |
| Input power          | 20 dBm              |  |
| Liquid Temperature   | 21 °C               |  |
| Lab Temperature      | 21 °C               |  |
| Lab Humidity         | 45 %                |  |

| Frequency<br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)     |
|------------------|----------|--------------|----------|--------------|
|                  | required | measured     | required | measured     |
| 300              | 2.85     |              | 1.94     |              |
| 450              | 4.58     |              | 3.06     |              |
| 750              | 8.49     |              | 5.55     |              |
| 835              | 9.56     |              | 6.22     |              |
| 900              | 10.9     |              | 6.99     |              |
| 1450             | 29       |              | 16       |              |
| 1500             | 30.5     |              | 16.8     |              |
| 1640             | 34.2     |              | 18.4     |              |
| 1750             | 36.4     |              | 19.3     |              |
| 1800             | 38.4     | 38.13 (3.81) | 20.1     | 20.20 (2.02) |
| 1900             | 39.7     |              | 20.5     |              |
| 1950             | 40.5     |              | 20.9     |              |
| 2000             | 41.1     |              | 21.1     |              |
| 2100             | 43.6     |              | 21.9     |              |
| 2300             | 48.7     |              | 23.3     |              |
| 2450             | 52.4     |              | 24       |              |
| 2600             | 55.3     |              | 24.6     |              |
| 3000             | 63.8     |              | 25.7     |              |
| 3500             | 67.1     |              | 25       |              |



#### Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 85 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

# 7.3 BODY LIQUID MEASUREMENT

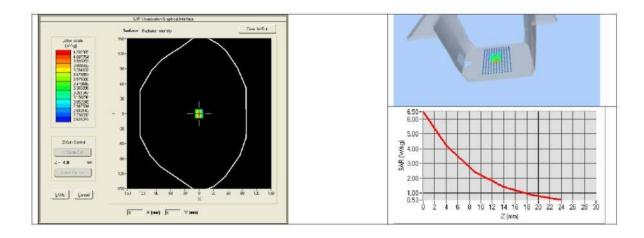
| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv  | ity (σ) S/m |
|------------------|--------------|-----------------|------------|-------------|
|                  | required     | measured        | required   | measured    |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %    |                 | 0.94 ±5 %  |             |
| 750              | 55.5 ±5 %    |                 | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %    |                 | 0.97 ±5 %  |             |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %    | PASS            | 1.52 ±5 %  | PASS        |
| 1900             | 53.3 ±5 %    | -               | 1.52 ±5 %  |             |
| 2000             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %  |             |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %    |                 | 3.31 ±5 %  |             |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |             |
| 5500             | 48.6 ±10 %   |                 | 5.65 ±10 % |             |
| 5600             | 48.5 ±10 %   |                 | 5.77 ±10 % |             |
| 5800             | 48.2 ±10 %   |                 | 6.00 ±10 % |             |

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| OPENSAR V4                                   |  |
|----------------------------------------------|--|
| SN 20/09 SAM71                               |  |
| SN 18/11 EPG122                              |  |
| Body Liquid Values: eps' : 53.3 sigma : 1.51 |  |
| 10.0 mm                                      |  |
| dx=8mm/dy=8mm                                |  |
| dx=8mm/dy=8m/dz=5mm                          |  |
| 1800 MHz                                     |  |
| 20 dBm                                       |  |
| 21 °C                                        |  |
| 21 °C                                        |  |
| 45 %                                         |  |
|                                              |  |

#### Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 86 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.6.14.SATU.A

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 1800             | 39.03 (3.90)     | 20.65 (2.07)      |



Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 87 of 114



# 8 LIST OF EQUIPMENT

| Equipment Summary Sheet                 |                        |                    |                                               |                                                                   |  |  |
|-----------------------------------------|------------------------|--------------------|-----------------------------------------------|-------------------------------------------------------------------|--|--|
| EquipmentManufacturer /DescriptionModel |                        | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                                          |  |  |
| SAM Phantom                             | Satimo                 | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No cal<br>required.                                    |  |  |
| COMOSAR Test Bench                      | Version 3              | NA                 | Validated. No cal<br>required.                | Validated. No cal<br>required.                                    |  |  |
| Network Analyzer                        | Rhode & Schwarz<br>ZVA | SN100132           | 02/2016                                       | 02/2019                                                           |  |  |
| Calipers                                | Carrera                | CALIPER-01         | 12/2016                                       | 12/2019                                                           |  |  |
| Reference Probe                         | Satimo                 | EPG122 SN 18/11    | 10/2018                                       | 10/2019                                                           |  |  |
| Multimeter                              | Keithley 2000          | 1188656            | 12/2016                                       | 12/2019                                                           |  |  |
| Signal Generator                        | Agilent E4438C         | MY49070581         | 12/2016                                       | 12/2019                                                           |  |  |
| Amplifier                               | Aethercomm             | SN 046             | Characterized prior to test. No cal required. | CONTRACTOR AND REAL PROPERTY AND REAL PROPERTY AND REAL PROPERTY. |  |  |
| Power Meter                             | HP E4418A              | US38261498         | 12/2016                                       | 12/2019                                                           |  |  |
| Power Sensor                            | HP ECP-E26A            | US37181460         | 12/2016                                       | 12/2019                                                           |  |  |
| Directional Coupler                     | Narda 4216-20          | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required.                     |  |  |
| Temperature and<br>Humidity Sensor      | Control Company        | 11-661-9           | 8/2016                                        | 8/2019                                                            |  |  |

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 88 of 114



# 5.5 SID2000 Dipole Calibration Ceriticate



# **SAR Reference Dipole Calibration Report**

Ref: ACR.287.7.14.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 2000 MHZ

SERIAL NO.: SN 07/14 DIP 2G000-305

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



10/01/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 89 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.7.14.SATU.A

|               | Name          | Function        | Date       | Signature      |
|---------------|---------------|-----------------|------------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/14/2018 | Jez            |
| Checked by :  | Jérôme LUC    | Product Manager | 10/14/2018 | JS             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/14/2018 | them Muthowshi |

|                | Customer Name                      |
|----------------|------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing |
|                | Laboratory Ltd.                    |

| Issue | Date       | Modifications   |  |
|-------|------------|-----------------|--|
| A     | 10/14/2018 | Initial release |  |
|       |            |                 |  |
|       |            |                 |  |
|       |            |                 |  |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 90 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.7.14.SATU.A

# TABLE OF CONTENTS

| 1 | Intro | oduction                                |   |
|---|-------|-----------------------------------------|---|
| 2 | Dev   | ice Under Test                          |   |
| 3 | Proc  | luct Description                        |   |
|   | 3.1   | General Information                     | 4 |
| 4 | Mea   | surement Method                         |   |
|   | 4.1   | Return Loss Requirements                | 5 |
|   | 4.2   | Mechanical Requirements                 |   |
| 5 | Mea   | surement Uncertainty                    |   |
|   | 5.1   | Return Loss                             | 5 |
|   | 5.2   | Dimension Measurement                   | 5 |
|   | 5.3   | Validation Measurement                  | 5 |
| 6 | Cali  | bration Measurement Results             |   |
|   | 6.1   | Return Loss and Impedance               | 6 |
|   | 6.2   | Mechanical Dimensions                   | 6 |
| 7 | Vali  | dation measurement7                     |   |
|   | 7.1   | Head Liquid Measurement                 | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid | 7 |
|   | 7.3   | Body Liquid Measurement                 | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid | 9 |
| 8 | List  | of Equipment                            |   |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 91 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.7.14.SATU.A

# 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

# 2 DEVICE UNDER TEST

| Device Under Test              |                                   |  |  |  |
|--------------------------------|-----------------------------------|--|--|--|
| Device Type                    | COMOSAR 2000 MHz REFERENCE DIPOLE |  |  |  |
| Manufacturer                   | Satimo                            |  |  |  |
| Model                          | SID2000                           |  |  |  |
| Serial Number                  | SN 07/14 DIP 2G000-305            |  |  |  |
| Product Condition (new / used) | New                               |  |  |  |

A yearly calibration interval is recommended.

# 3 PRODUCT DESCRIPTION

## 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole

#### Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 92 of 114



#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

# 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 3 - 300     | 0.05 mm                        |

## 5.3 VALIDATION MEASUREMENT

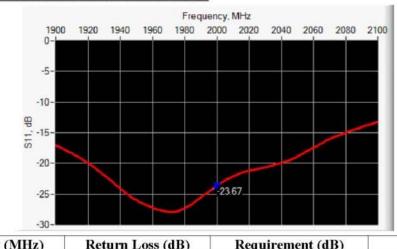
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |

| Page: | 5/11 |
|-------|------|
|-------|------|

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 93 of 114




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.7.14.SATU.A

# 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance       |
|-----------------|------------------|------------------|-----------------|
| 2000            | -23.67           | -20              | 50.8 Ω - 6.2 jΩ |

# 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | nm       | h m         | im       | d r        | nm       |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. |          | 89.8±1%.    |          | 3.6 ±1 %.  |          |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1500          | 80.5 ±1 %.  |          | 50.0±1%.    |          | 3.6 ±1 %.  |          |
| 1640          | 79.0±1%.    |          | 45.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1800          | 72.0±1%.    |          | 41.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2000          | 64.5±1%.    | PASS     | 37.5 ±1 %.  | PASS     | 3.6 ±1 %.  | PASS     |
| 2100          | 61.0 ±1 %.  | -        | 35.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6±1%.    |          | 3.6 ±1 %.  |          |
| 2450          | 51.5±1%.    |          | 30.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2600          | 48.5 ±1 %.  |          | 28.8±1%.    |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |

#### Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 94 of 114



Ref: ACR.287.7.14.SATU.A

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

# 7.1 <u>HEAD LIQUID MEASUREMENT</u>

| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv | ity (σ) S/m |
|------------------|--------------|-----------------|-----------|-------------|
|                  | required     | measured        | required  | measured    |
| 300              | 45.3 ±5 %    |                 | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                 | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    |                 | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %    |                 | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %    |                 | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %    |                 | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                 | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                 | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                 | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    | PASS            | 1.40 ±5 % | PASS        |
| 2100             | 39.8 ±5 %    |                 | 1.49 ±5 % |             |
| 2300             | 39.5 ±5 %    |                 | 1.67 ±5 % |             |
| 2450             | 39.2 ±5 %    |                 | 1.80 ±5 % |             |
| 2600             | 39.0 ±5 %    |                 | 1.96 ±5 % |             |
| 3000             | 38.5 ±5 %    |                 | 2.40 ±5 % |             |
| 3500             | 37.9 ±5 %    |                 | 2.91 ±5 % |             |

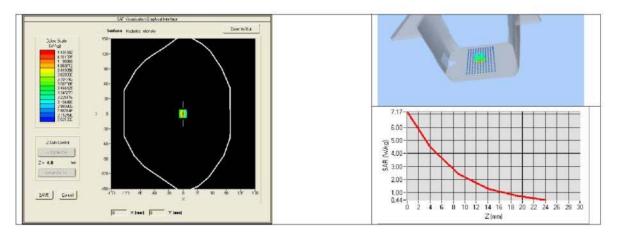
# 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Head Liquid Values: eps' : 39.7 sigma : 1.43 |
| Distance between dipole center and liquid | 10.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |

#### Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 95 of 114



Ref: ACR.287.7.14.SATU.A

| Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm |  |
|----------------------|---------------------|--|
| Frequency            | 2000 MHz            |  |
| Input power          | 20 dBm              |  |
| Liquid Temperature   | 21 °C               |  |
| Lab Temperature      | 21 °C               |  |
| Lab Humidity         | 45 %                |  |

| Frequency<br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)     |
|------------------|----------|--------------|----------|--------------|
|                  | required | measured     | required | measured     |
| 300              | 2.85     |              | 1.94     |              |
| 450              | 4.58     |              | 3.06     |              |
| 750              | 8.49     |              | 5.55     |              |
| 835              | 9.56     |              | 6.22     |              |
| 900              | 10.9     |              | 6.99     |              |
| 1450             | 29       |              | 16       |              |
| 1500             | 30.5     |              | 16.8     |              |
| 1640             | 34.2     |              | 18.4     |              |
| 1750             | 36.4     |              | 19.3     |              |
| 1800             | 38.4     |              | 20.1     |              |
| 1900             | 39.7     |              | 20.5     |              |
| 1950             | 40.5     |              | 20.9     |              |
| 2000             | 41.1     | 43.00 (4.30) | 21.1     | 21.20 (2.12) |
| 2100             | 43.6     |              | 21.9     |              |
| 2300             | 48.7     |              | 23.3     |              |
| 2450             | 52.4     |              | 24       |              |
| 2600             | 55.3     |              | 24.6     |              |
| 3000             | 63.8     |              | 25.7     |              |
| 3500             | 67.1     |              | 25       |              |



#### Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 96 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.7.14.SATU.A

# 7.3 BODY LIQUID MEASUREMENT

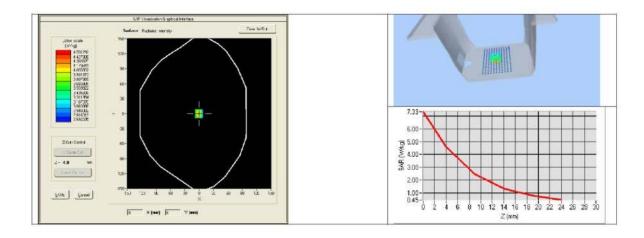
| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv  | ity (σ) S/m |
|------------------|--------------|-----------------|------------|-------------|
|                  | required     | measured        | required   | measured    |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %    |                 | 0.94 ±5 %  |             |
| 750              | 55.5 ±5 %    |                 | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %    |                 | 0.97 ±5 %  |             |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 1900             | 53.3 ±5 %    | -               | 1.52 ±5 %  |             |
| 2000             | 53.3 ±5 %    | PASS            | 1.52 ±5 %  | PASS        |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %  |             |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %    |                 | 3.31±5%    |             |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |             |
| 5500             | 48.6 ±10 %   |                 | 5.65 ±10 % |             |
| 5600             | 48.5 ±10 %   |                 | 5.77 ±10 % |             |
| 5800             | 48.2 ±10 %   |                 | 6.00 ±10 % |             |

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| OPENSAR V4                                   |
|----------------------------------------------|
| SN 20/09 SAM71                               |
| SN 18/11 EPG122                              |
| Body Liquid Values: eps' : 53.9 sigma : 1.53 |
| 10.0 mm                                      |
| dx=8mm/dy=8mm                                |
| dx=8mm/dy=8m/dz=5mm                          |
| 2000 MHz                                     |
| 20 dBm                                       |
| 21 °C                                        |
| 21 °C                                        |
| 45 %                                         |
|                                              |

#### Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 97 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.7.14.SATU.A

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 2000             | 45.84 (4.58)     | 22.30 (2.23)      |



Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 98 of 114



# 8 LIST OF EQUIPMENT

|                                    | Equipment Summary Sheet |                    |                                               |                                               |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2016                                       | 02/2019                                       |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2016                                       | 12/2019                                       |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2018                                       | 10/2019                                       |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2016                                       | 12/2019                                       |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2016                                       | 12/2019                                       |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                        | HP E4418A               | US38261498         | 12/2016                                       | 12/2019                                       |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2016                                       | 12/2019                                       |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2016                                        | 8/2019                                        |

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 99 of 114

# 5.6 SID2450 Dipole Calibration Ceriticate



# **SAR Reference Dipole Calibration Report**

Ref: ACR.287.8.14.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA

SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 07/14 DIP 2G450-306

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



10/01/2018

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 100 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

|               | Name          | Function        | Date       | Signature      |
|---------------|---------------|-----------------|------------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/14/2018 | Jez            |
| Checked by :  | Jérôme LUC    | Product Manager | 10/14/2018 | JS             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/14/2018 | them Muthowshi |

|                | Customer Name                      |
|----------------|------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing |
|                | Laboratory Ltd.                    |

| Issue | Date       | Modifications   |  |
|-------|------------|-----------------|--|
| A     | 10/14/2018 | Initial release |  |
|       |            |                 |  |
|       |            |                 |  |
|       |            |                 |  |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 101 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

# TABLE OF CONTENTS

| 1 | Intro | oduction                                |   |
|---|-------|-----------------------------------------|---|
| 2 | Dev   | ice Under Test                          |   |
| 3 | Proc  | luct Description                        |   |
|   | 3.1   | General Information                     | 4 |
| 4 | Mea   | surement Method                         |   |
|   | 4.1   | Return Loss Requirements                | 5 |
|   | 4.2   | Mechanical Requirements                 |   |
| 5 | Mea   | surement Uncertainty                    |   |
|   | 5.1   | Return Loss                             | 5 |
|   | 5.2   | Dimension Measurement                   | 5 |
|   | 5.3   | Validation Measurement                  | 5 |
| 6 | Cali  | bration Measurement Results6            |   |
|   | 6.1   | Return Loss and Impedance               | 6 |
|   | 6.2   | Mechanical Dimensions                   | 6 |
| 7 | Vali  | dation measurement                      |   |
|   | 7.1   | Head Liquid Measurement                 | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid | 7 |
|   | 7.3   | Body Liquid Measurement                 | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid | 9 |
| 8 | List  | of Equipment 11                         |   |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 102 of 114

Report No.: LCS190415004AEB



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

# 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

# 2 DEVICE UNDER TEST

| Device Under Test                          |                        |  |  |  |
|--------------------------------------------|------------------------|--|--|--|
| Device Type COMOSAR 2450 MHz REFERENCE DIP |                        |  |  |  |
| Manufacturer                               | Satimo                 |  |  |  |
| Model                                      | SID2450                |  |  |  |
| Serial Number                              | SN 07/14 DIP 2G450-306 |  |  |  |
| Product Condition (new / used)             | New                    |  |  |  |

A yearly calibration interval is recommended.

# 3 PRODUCT DESCRIPTION

## 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole

#### Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 103 of 114



#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

# 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Los |  |  |
|----------------|------------------------------------|--|--|
| 400-6000MHz    | 0.1 dB                             |  |  |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 3 - 300     | 0.05 mm                        |

## 5.3 VALIDATION MEASUREMENT

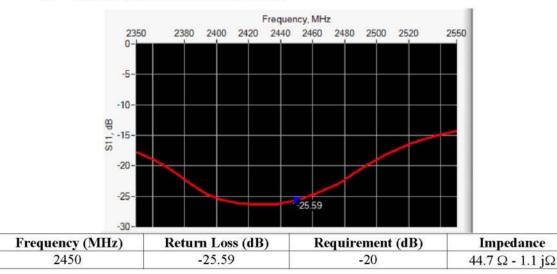
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |

| Page: | 5/11 |
|-------|------|
|-------|------|

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 104 of 114




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

# 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE



#### 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | Lmm         |          | <b>h</b> mm |          | <b>d</b> mm |          |
|---------------|-------------|----------|-------------|----------|-------------|----------|
|               | required    | measured | required    | measured | required    | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %.  |          |
| 450           | 290.0 ±1 %. | ļ        | 166.7 ±1 %. |          | 6.35 ±1 %.  |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %.  |          |
| 835           | 161.0 ±1 %. |          | 89.8±1%.    |          | 3.6 ±1 %.   |          |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1500          | 80.5 ±1 %.  |          | 50.0 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1640          | 79.0±1%.    |          | 45.7 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1800          | 72.0 ±1 %.  |          | 41.7 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.   |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.   |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.  |          | 3.6 ±1 %.   |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.  |          | 3.6 ±1 %.   |          |
| 2300          | 55.5 ±1 %.  |          | 32.6±1%.    |          | 3.6 ±1 %.   |          |
| 2450          | 51.5 ±1 %.  | PASS     | 30.4 ±1 %.  | PASS     | 3.6 ±1 %.   | PASS     |
| 2600          | 48.5 ±1 %.  |          | 28.8±1%.    |          | 3.6 ±1 %.   |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.   |          |
| 3500          | 37.0±1%.    |          | 26.4 ±1 %.  |          | 3.6 ±1 %.   |          |
| 3700          | 34.7±1 %.   | 3        | 26.4 ±1 %.  |          | 3.6 ±1 %.   |          |

#### Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 105 of 114



Ref: ACR.287.8.14.SATU.A

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

#### 7.1 <u>HEAD LIQUID MEASUREMENT</u>

| Frequency<br>MHz | Relative permittivity ( $\epsilon_r'$ ) |          | Conductiv | ity (σ) S/m |
|------------------|-----------------------------------------|----------|-----------|-------------|
|                  | required                                | measured | required  | measured    |
| 300              | 45.3 ±5 %                               |          | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %                               |          | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %                               |          | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %                               |          | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %                               |          | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %                               |          | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %                               |          | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %                               |          | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %                               |          | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %                               |          | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %                               |          | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %                               |          | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %                               |          | 1.40 ±5 % |             |
| 2100             | 39.8 ±5 %                               |          | 1.49 ±5 % |             |
| 2300             | 39.5 ±5 %                               |          | 1.67 ±5 % |             |
| 2450             | 39.2 ±5 %                               | PASS     | 1.80 ±5 % | PASS        |
| 2600             | 39.0 ±5 %                               |          | 1.96 ±5 % |             |
| 3000             | 38.5 ±5 %                               |          | 2.40 ±5 % |             |
| 3500             | 37.9 ±5 %                               |          | 2.91 ±5 % |             |

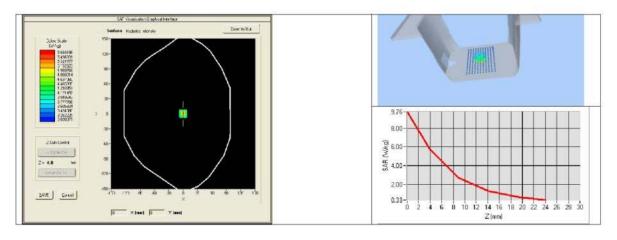
# 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Head Liquid Values: eps' : 39.0 sigma : 1.77 |
| Distance between dipole center and liquid | 10.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |

#### Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 106 of 114



Ref: ACR.287.8.14.SATU.A

| Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm |  |
|----------------------|---------------------|--|
| Frequency            | 2450 MHz            |  |
| Input power          | 20 dBm              |  |
| Liquid Temperature   | 21 °C               |  |
| Lab Temperature      | 21 °C               |  |
| Lab Humidity         | 45 %                |  |

| Frequency<br>MHz | 1 g SAR (W/kg/W) |              | 10 g SAR (W/kg/W) |             |
|------------------|------------------|--------------|-------------------|-------------|
|                  | required         | measured     | required          | measured    |
| 300              | 2.85             |              | 1.94              |             |
| 450              | 4.58             |              | 3.06              |             |
| 750              | 8.49             |              | 5.55              |             |
| 835              | 9.56             |              | 6.22              |             |
| 900              | 10.9             |              | 6.99              |             |
| 1450             | 29               |              | 16                |             |
| 1500             | 30.5             |              | 16.8              |             |
| 1640             | 34.2             |              | 18.4              |             |
| 1750             | 36.4             |              | 19.3              |             |
| 1800             | 38.4             |              | 20.1              |             |
| 1900             | 39.7             |              | 20.5              |             |
| 1950             | 40.5             |              | 20.9              |             |
| 2000             | 41.1             |              | 21.1              |             |
| 2100             | 43.6             |              | 21.9              |             |
| 2300             | 48.7             |              | 23.3              |             |
| 2450             | 52.4             | 53.89 (5.39) | 24                | 24.15 (2.42 |
| 2600             | 55.3             |              | 24.6              |             |
| 3000             | 63.8             |              | 25.7              |             |
| 3500             | 67.1             |              | 25                |             |



#### Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 107 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

# 7.3 BODY LIQUID MEASUREMENT

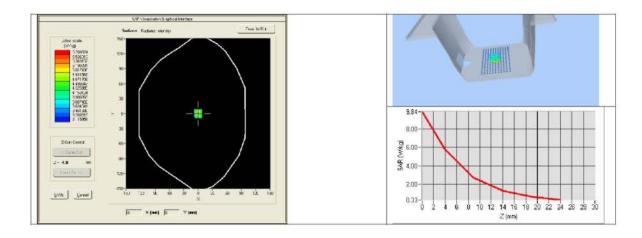
| Frequency<br>MHz | Relative permittivity ( $\epsilon_r$ ) |          | Conductiv  | ity (σ) S/m |
|------------------|----------------------------------------|----------|------------|-------------|
|                  | required                               | measured | required   | measured    |
| 150              | 61.9 ±5 %                              |          | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %                              |          | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %                              |          | 0.94 ±5 %  |             |
| 750              | 55.5 ±5 %                              |          | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %                              |          | 0.97 ±5 %  |             |
| 900              | 55.0 ±5 %                              |          | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %                              |          | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %                              |          | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %                              |          | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %                              |          | 1.52 ±5 %  |             |
| 1900             | 53.3 ±5 %                              |          | 1.52 ±5 %  |             |
| 2000             | 53.3 ±5 %                              |          | 1.52 ±5 %  |             |
| 2100             | 53.2 ±5 %                              |          | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %                              | PASS     | 1.95 ±5 %  | PASS        |
| 2600             | 52.5 ±5 %                              |          | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %                              |          | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %                              |          | 3.31±5%    |             |
| 5200             | 49.0 ±10 %                             |          | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %                             |          | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %                             |          | 5.53 ±10 % |             |
| 5500             | 48.6 ±10 %                             |          | 5.65 ±10 % |             |
| 5600             | 48.5 ±10 %                             |          | 5.77 ±10 % |             |
| 5800             | 48.2 ±10 %                             |          | 6.00 ±10 % |             |

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| OPENSAR V4                                   |  |  |
|----------------------------------------------|--|--|
| SN 20/09 SAM71                               |  |  |
| SN 18/11 EPG122                              |  |  |
| Body Liquid Values: eps' : 53.0 sigma : 1.93 |  |  |
| 10.0 mm                                      |  |  |
| dx=8mm/dy=8mm                                |  |  |
| dx=8mm/dy=8m/dz=5mm                          |  |  |
| 2450 MHz                                     |  |  |
| 20 dBm                                       |  |  |
| 21 °C                                        |  |  |
| 21 °C                                        |  |  |
| 45 %                                         |  |  |
|                                              |  |  |

#### Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 108 of 114



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |  |
|------------------|------------------|-------------------|--|
|                  | measured         | measured          |  |
| 2450             | 54.65 (5.46)     | 24.58 (2.46)      |  |



Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 109 of 114



# 8 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                               |  |  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |  |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2016                                       | 02/2019                                       |  |  |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2016                                       | 12/2019                                       |  |  |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2018                                       | 10/2019                                       |  |  |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2016                                       | 12/2019                                       |  |  |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2016                                       | 12/2019                                       |  |  |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2016                                       | 12/2019                                       |  |  |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2016                                       | 12/2019                                       |  |  |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2016                                        | 8/2019                                        |  |  |  |

Page: 11/11

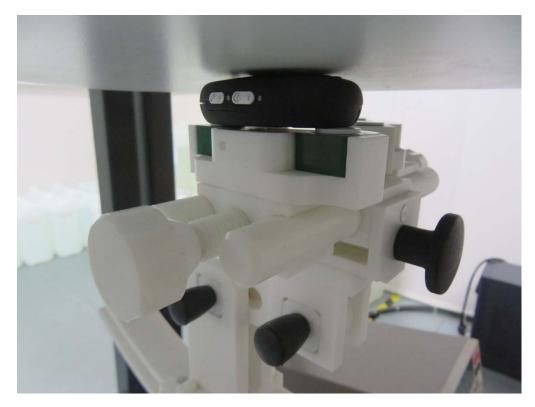
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 110 of 114

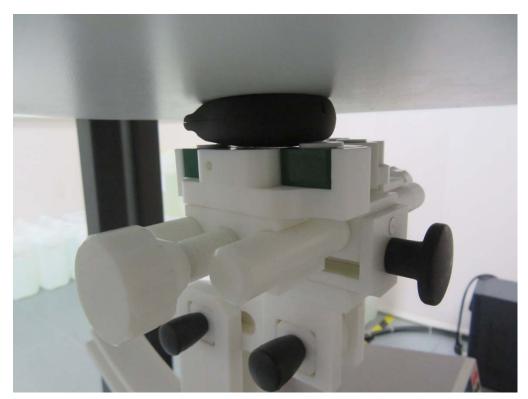
# 6. SAR System PHOTOGRAPHS



Liquid depth≧15cm




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 111 of 114


Report No.: LCS190415004AEB

# 7. SETUP PHOTOGRAPHS

# Body Setup photo(Front 0mm)



Body Setup photo(Back 0mm)



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 112 of 114

# **8.EUT PHOTOGRAPHS**

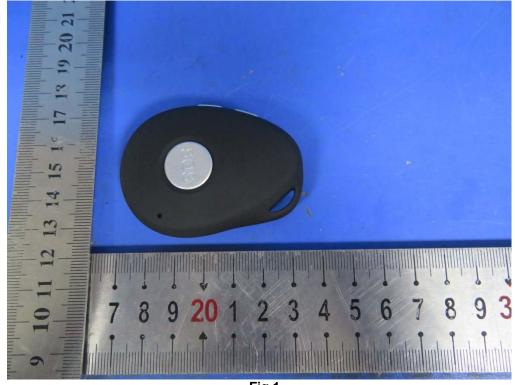



Fig.1

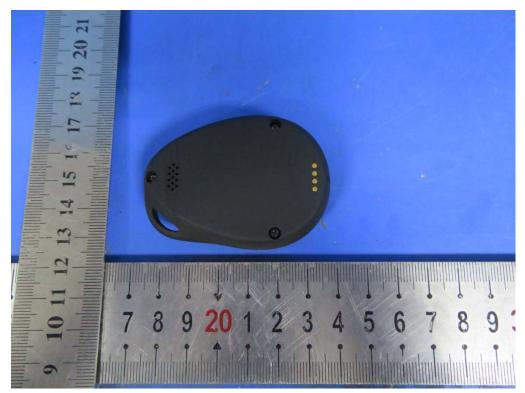
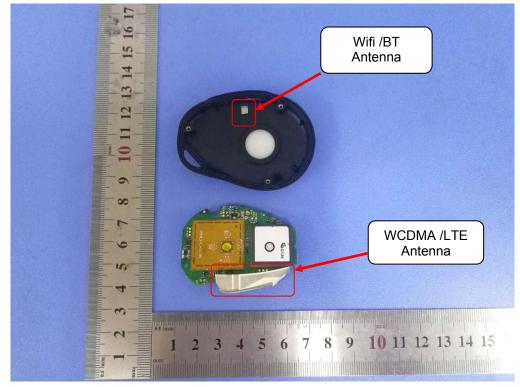




Fig.2

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 113 of 114



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 114 of 114